Units: SI system: kg (kilogram), m (meter), s (second), C (coulomb); \mathcal{A} (ampere) $=\mathrm{C} / \mathrm{s}, \mathrm{V}$ $($ volt $)=\mathrm{J} / \mathrm{C}, \mathrm{F}($ farad $)=\mathrm{C} / \mathrm{V}, \Omega(\mathrm{ohm})=\mathrm{V} / \mathcal{A} .1 \mathrm{~mm}=10^{-3} \mathrm{~m}, 1 \mathrm{~cm}=10^{-2} \mathrm{~m}, 1 \mathrm{~km}=10^{3} \mathrm{~m}$; 1 N (newton) $=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}, 1 \mathrm{~J}$ (joule) $=\mathrm{N} \cdot \mathrm{m}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}, 1 \mathrm{~W}$ (watt) $=\mathrm{J} / \mathrm{s}$; prefixes: m (milli) $10^{-3}, \mu$ (micro) 10^{-6}, n (nano) $10^{-9}, \mathrm{p}$ (pico) $10^{-12}, \mathrm{k}$ (kilo) 10^{3}, M (mega) 10^{6}.
Constants: $g=9.8 \mathrm{~m} / \mathrm{s}^{2}, k_{e}=9 * 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}=1 /\left(4 \pi \epsilon_{0}\right), \epsilon_{0}=8.85 * 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \mathrm{m}^{2}\right)$, $\mu_{0}=4 \pi * 10^{-7} T-m / A . e=-1.6 * 10^{-19} \mathrm{C}, m_{e}=9.11 * 10^{-31} \mathrm{~kg}, m_{p} \simeq m_{n}=1.67 * 10^{-27} \mathrm{~kg}$ Volumes. Cylinder: $\pi R^{2} h$, sphere: $\frac{4}{3} \pi R^{3}$, cone: $\frac{1}{3} \pi R^{2} h$. Areas: Sphere: $4 \pi R^{2}$, circle: πR^{2}.
Quadratic equation. $a x^{2}+b x+c=0, x=\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$
Derivatives/integrals. $\frac{d}{d x} x^{n}=n x^{n-1}, \frac{d}{d x} \sin x=\cos x, \frac{d}{d x} \cos x=-\sin x, \frac{d}{d x} e^{-a x}=$ $-a e^{-a x} ; \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \int d x / x=\ln x ; \int d x / \sqrt{a^{2}+x^{2}}=\ln \left(x+\sqrt{a^{2}+x^{2}}\right)$; $\int d x\left(a^{2}+x^{2}\right)^{-\frac{3}{2}}=x /\left(a^{2} \sqrt{a^{2}+x^{2}}\right) ; \int x d x\left(a^{2}+x^{2}\right)^{-\frac{3}{2}}=-1 /\left(\sqrt{a^{2}+x^{2}}\right) ; \int \sin x d x=$ $-\cos x ; \int \cos x d x=\sin x$.
Vectors. If $\vec{c}=\vec{a}+\vec{b}$, then $c_{x}=a_{x}+b_{x}, c_{y}=a_{y}+b_{y}, c_{z}=a_{z}+b_{z}$ and $c=\sqrt{c_{x}^{2}+c_{y}^{2}+c_{z}^{2}}$. Dot product: $\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=a * b * \cos \theta$. Cross product: $\hat{i} \times \hat{j}=\hat{k}, \hat{j} \times \hat{k}=\hat{i}, \hat{k} \times \hat{i}=\hat{j}$; $\vec{A} \times \vec{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k} ;|\vec{A} \times \vec{B}|=A * B * \sin \alpha$.

Coulombs Law: $F=k_{e} \frac{q_{1} q_{2}}{r^{2}}, r$-distance between charges; in vector form $\vec{F}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{r}$, $\hat{r}=\vec{r} / r$ - unit vector from charge q_{1} to $q_{2}, k_{e}=9 * 10^{9} \ldots$ Superposition: if charge q_{1} acts on q_{0} with \vec{F}_{01}, charge q_{2} acts on q_{0} with \vec{F}_{02}, etc., then $\vec{F}_{\text {net on } q_{0}}=\vec{F}_{01}+\vec{F}_{02}+\ldots$

Electric field. Definition: $\vec{E}=\vec{F}_{0} / q_{0}$ (charge q_{0} is a "probe"). Field from a charge q : $E=k_{e} \frac{q}{r^{2}}, r$-distance between charge and observation point; in vector form $\vec{E}=k_{e} \frac{q}{r^{2}} \hat{,}$, $\hat{r}=\vec{r} / r$ - unit vector from charge q to the observation point, $k_{e}=9 * 10^{9} \ldots$ Superposition: consider charges q_{1}, q_{2}, etc. and the observation point. If q_{1} creates field \vec{E}_{1} at the observation point, q_{2} creates field \vec{E}_{2}, etc., then $\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\ldots$.
Force on a charge placed in external field $\vec{E}: \vec{F}=q \vec{E}$.
Gauss Law. Flux through a small area A with \vec{A} along the normal to the surface: $\Phi=\vec{E} \cdot \vec{A}$. Flux through a closed surface: $\oint \vec{E} \cdot d \vec{A}=q_{\mathrm{enc}} / \epsilon_{0}$. Field $E(r)$ from a uniformly charged spherical shell with radius R and charge $Q: E(r<R)=0, E(r>R)=k_{e} Q / r^{2}$. Field $E(r)$ from a uniformly charged infinite line with linear charge density $\lambda: E(r)=\lambda /\left(2 \pi \epsilon_{0} r\right)=$ $2 k_{e} \lambda / r$. Field E from a uniformly charged infinite non-conducting plane with surface charge density σ : $E=\sigma /\left(2 \epsilon_{0}\right)=2 \pi k_{e} \sigma$.

Potential. Definition: $V=U / q_{0}$. Work: $W_{A B}=U_{A}-U_{B}=-q \Delta V$. Two charges: $U=$ $k_{e} q_{1} q_{2} / r$. Point charge: $V(r)=k_{e} q / r$. Superposition: $V(\vec{r})=k_{e}\left(q_{1} / r_{1}+q_{2} / r_{2}+\ldots\right)$ (with r_{1} - distance from q_{1} to observation point, etc.). Potential from field: $V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{s}$; for uniform field: $\Delta V=-E d$. Field from potential: $E_{x}=-d V / d x, \ldots$. Conducting sphere with charge Q and radius R : $V(r)=k_{e} Q / r, r \geq R$ and $V(r)=k_{e} Q / R, r \leq R$.

Conductors. Inside the body of a conductor: $\vec{E}=0, V=$ const, no charge. Extra charge goes to outer surface. Field near the surface of a conductor, outside, is $E=\sigma / \epsilon_{0}$; potential continuous. Inner surfaces (surfaces of cavities) - uncharged, unless an extra charge is placed inside a cavity.

Capacitors. Definition: $C=Q / V$. Single sphere: $C=4 \pi \epsilon_{0} R$. Spherical: $C=$ $4 \pi \epsilon_{0} R_{1} R_{2} /\left(R_{2}-R_{1}\right)$. Parallel plate capacitor: $C=A \epsilon_{0} \kappa / d$. Energy: $U_{C}=Q^{2} /(2 C)=$ $V^{2} C / 2$. Connections: parallel (same voltage) $C_{e q}=C_{1}+C_{2}+\ldots ;$ series (same charge) $1 / C_{e q}=1 / C_{1}+1 / C_{2}+\ldots$ or $C_{e q}=C_{1} C_{2} /\left(C_{1}+C_{2}\right)$ (for two only). $Q_{\text {tot }}=V C_{e q}$.

Current. Definitions: current $I=\Delta q / \Delta t \simeq d q / d t$, density of current $J=I / A$, with A - cross-sectional area. Ohm's law: $I=V / R$ with R-resistance. For wire of length L : $R=\rho L / A$, with ρ - resistivity of material. $J=E / \rho$. Power: $P=I V=I^{2} R=V^{2} / R$. Simple connections: series (same current) $R_{e q}=R_{1}+R_{2}+\ldots$; parallel (same voltage) $1 / R_{e q}=1 / R_{1}+1 / R_{2}+\ldots$ or $R_{e q}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$ (for two only). Microscopic picture: $J=e n v_{d}$.

Multiloop circuits and Kirchoff's equations. Potential changes: $+\mathcal{E}$ when crossing battery from negative to positive terminal; $-I R$ when traveling through a resistor along the current. Loop equation: potential drop around a close loop is zero. Junction equation: sum of incoming currents equals sum of outgoing currents.
Charging a capacitor: $q(t)=\mathcal{E} C\left(1-e^{-t / \tau}\right)$ with $\tau=R C ; V_{C}(t)=\frac{q}{C}=\mathcal{E}\left(1-e^{-t / \tau}\right), i(t)=$ $i_{\max } e^{-t / \tau}$ with $i_{\max }=\frac{\mathcal{E}}{R}$. Discharging a capacitor: $\tau=R C, q(t)=Q_{0} e^{-t / \tau}, V(t)=V_{0} e^{-t / \tau}$ with $V_{0}=\frac{Q_{0}}{C} ; i(t)=i_{0} e^{-t / \tau}$ with $i_{0}=\frac{Q_{0}}{R C}$.

Magnetic force. Force on a particle: $\vec{F}_{m}=q \vec{v} \times \vec{B}$. Revolution in magnetic field: radius $r=m v /(q B)$, period $T=2 \pi m /(q B)$. Force on a wire: $\vec{F}_{w}=I \vec{L} \times \vec{B}$. Interaction between two parallel wires: $F=\mu_{0} I_{1} I_{2} L /(2 \pi d)$ with $\mu_{0}=4 \pi * 10^{-7}$. Magnetic moment for a coil with N turns: $\vec{\mu}=N I \vec{A}$; potential energy: $U=-\vec{\mu} \cdot \vec{B}$; torque $\vec{\tau}=\vec{\mu} \times \vec{B}$.

Fields from currents. Straight wire: $B=\mu_{0} I /(2 \pi d)$. Bio-Savarat: $d \vec{B}=\left(\mu_{0} / 4 \pi\right) I d \vec{s} \times$ \vec{r} / r^{3}. At the center of ring current of radius $R: B_{\text {ring }}=\mu_{0} I /(2 R)$; for a circular arc with angle θ (in radians): $B=B_{\text {ring }} \times \theta /(2 \pi)$. Amper's Law: $\oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {enc }}$. Field in a solenoid: $B=\mu_{0} I n$, with n - density of turns.

Electromagnetic induction (Faraday Law). EMF $\mathcal{E}=-d \Phi_{B} / d t . \Phi_{B} \simeq \vec{A} \cdot \vec{B}$. If area $A=$ const, $\mathcal{E}=-A d B / d t$; if $B=$ const, $\mathcal{E}=-B d A / d t$; moving rod: $\mathcal{E}=l v B$. Induced current: $I_{\text {ind }}=\mathcal{E} / R$. Direction (Lenz rule): the flux due to induced current tries to oppose the changes in the original flux. Self-induction. Magnetic flux through a conductor with current $I: \Phi=L I, L$-inductance. For a solenoid with length l, cross-sectional area A and density of turns n, one has $L / l=\mu_{0} A n^{2}$. Self-induced EMF: $\mathcal{E}_{L}=-L d I / d t$. Energy: $U_{L}=\frac{1}{2} L I^{2}$.

RL circuits. Time constant $\tau_{L}=L / R$. Decay of current $I(t)=I_{0} \exp \left(-t / \tau_{L}\right)$. Build up of current $I(t)=\mathcal{E} / R *\left[1-\exp \left(-t / \tau_{L}\right)\right]$. At $t=0$ inductor acts as infinite resistance; at $t \rightarrow \infty$ acts as a piece of wire.

LC and driven LRC circuits. Free oscillations in LC circuit: natural (or resonant) frequency $\omega_{0}=1 / \sqrt{L C}$ (in rad/s) or $f_{0}=\omega_{0} /(2 \pi)$ (in Hz). Energy conservation: $\frac{1}{2} q^{2} / C+$ $\frac{1}{2} L i^{2}=$ const or $\frac{1}{2} Q_{\max }^{2} / C=\frac{1}{2} L I_{\max }^{2}$. Driven: f_{d} (in Hz) - driving frequency; $\omega_{d}=2 \pi f_{d}$. Inductive reactance: $X_{L}=\omega_{d} L$; capacitive reactance: $X_{C}=1 /\left(\omega_{d} C\right)$. Impedance $Z=$ $\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$. Amplitude of current: $I_{m}=\mathcal{E}_{m} / Z$. Phase angle: $\tan \phi=\left(X_{L}-X_{C}\right) / R$. Resonance: $\omega_{d}=\omega_{0}, X_{L}=X_{C}, Z=R=\min , I_{m}=\mathcal{E}_{m} / R=\max$. RMS values: $I_{R M S}=$ $I_{m} / \sqrt{2}, V_{R M S}=\mathcal{E}_{m} / \sqrt{2} ; I_{R M S}=V_{R M S} / Z$. Power $P=I_{R M S}^{2} R$.
Transformers: $V_{2}=V_{1} * N_{2} / N_{1}, I_{2}=I_{1} * N_{1} / N_{2}$.

From Phys 111:

Kinematics: $v=d x / d t, a=d v / d t=d^{2} x / d t^{2}$. Circular motion with constant speed: $\omega=v / R, a_{c}=v^{2} / R=\omega^{2} R$, towards center.
The three Laws of motion: (1) If $\vec{F}_{n e t}=0$ then $\vec{v}=$ const; (2) $\vec{F}_{n e t}=m \vec{a}$; (3) $\vec{F}_{21}=-\vec{F}_{12}$ Work and power. $W_{A B}=\int_{A}^{B} \vec{F} \cdot d \vec{r}$. Power: $P=W / \Delta t=\vec{F} \cdot \vec{v}$.
Kinetic energy and work-energy theorem: $K=\frac{1}{2} m v^{2}, \Delta K=W$ where W is the net work (i.e. work by all forces).
Potential energy. For conservative forces (with path-independent work) introduce $U(\vec{r})$ so that $W_{A B}=U_{A}-U_{B}=-\Delta U$. If only conservative forces, then energy conservation: $K+U=$ const.

