Chapter 9 sect 5,6, Chapter 10 sect.1-10, Chapter 11 sect. 1-4, 7-8, 12 , Chapter 12 sect. 1-7, Chapter 13 Sect. 1-8, Chapter 14 sect. 1-8, Chapter 15 sect. 1-2, 4-6, Chapter 16 Sect. 1-7, Chapter 17sect. 1-2 Chapter 18 sect. 1-7, Chapter 19 sect. 1-4 Chapter 23 sect. 1-8, Chapter 24 sect. 3-4, 6

1. How large a force is necessary to stretch a $2.0-\mathrm{mm}$-diameter steel wire ($E=2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$) by 1.0% ?
A) $3.1 \times 10^{3} \mathrm{~N}$
B) $6.3 \times 10^{3} \mathrm{~N}$
C) $9.4 \times 10^{3} \mathrm{~N}$

$$
\sigma=\mathrm{E} \cdot \varepsilon=2 \times 10^{11} \mathrm{~Pa} \cdot 0.01=2 \times 10^{9}
$$

D) $1.3 \times 10^{4} \mathrm{~N}$
$\mathrm{F}=\sigma \pi \mathrm{r}^{2}=2 \times 10^{9} \cdot \pi(0.001 \mathrm{~m})^{2}=6300 \mathrm{~N}$
E) $3.1 \times 10^{7} \mathrm{~N}$
2. Crew members attempt to escape from a damaged submarine 80 m below the surface. What force must they apply to a pop-out hatch of radius of 18 cm to push it out? Assume the density of ocean water $1025 \mathrm{~kg} / \mathrm{m}^{3}$.
A) $3.1 \times 10^{3} \mathrm{~N}$
B) $6.3 \times 10^{3} \mathrm{~N} \quad \mathrm{~F}=\mathrm{pA}=\rho \mathrm{gh} \pi \mathrm{r}^{2}=1025 \mathrm{~kg} / \mathrm{m}^{3} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 80 \mathrm{~m} \cdot \pi(0.18 \mathrm{~m})^{2}$
C) $9.4 \times 10^{3} \mathrm{~N}$
D) $8.2 \times 10^{4} \mathrm{~N}$
E) $3.1 \times 10^{7} \mathrm{~N}$
3. A block of wood has density $0.50 \mathrm{~g} / \mathrm{cm}^{3}$ and mass 1500 g . It floats in a container of oil (the oil's density is $0.75 \mathrm{~g} / \mathrm{cm}^{3}$). What volume of oil does the wood displace?
A) $2000 \mathrm{~cm}^{3}$
B) $3000 \mathrm{~cm}^{3}$
C) $4000 \mathrm{~cm}^{3}$
D) $5000 \mathrm{~cm}^{3}$
E) $6000 \mathrm{~cm}^{3}$

$$
\mathrm{mg}=\mathrm{F}_{\mathrm{B}} \quad \mathrm{mg}=\rho \mathrm{gV} \quad \mathrm{~m}=\rho \mathrm{V} \quad \mathrm{~V}=1500 \mathrm{~g} / 0.75 \mathrm{~g} / \mathrm{cm}^{3}=2000 \mathrm{~cm}^{3}
$$

4. A water hose of radius of 1.2 cm is used to fill a bucket of volume of $0.075 \mathrm{~m}^{3}$. If it takes 2.2 min to fill the bucket, what is the speed at which the water leaves the hose?
A) $0.5 \mathrm{~m} / \mathrm{s} \quad$ volume $/$ time $=\mathrm{Av} \quad \mathrm{v}=0.075 \mathrm{~m}^{3} /\left(2.2 \times 60 \cdot \pi \cdot 0.012 \mathrm{~m}^{2}\right)=1.3 \mathrm{~m} / \mathrm{s}$
B) $1.3 \mathrm{~m} / \mathrm{s}$
C) $3.0 \mathrm{~m} / \mathrm{s}$
D) $4.9 \mathrm{~m} / \mathrm{s}$
E) $8.8 \mathrm{~m} / \mathrm{s}$
5. A sample of unknown material appears to weigh 300 N in air and 200 N when immersed in water. The density of the material is closest to
A) $1200 \mathrm{~kg} / \mathrm{m}^{3} \quad 300 \mathrm{~N}-200 \mathrm{~N}=\rho \mathrm{gV} \quad$ solve for $\mathrm{V} \quad$ solve for density m / V
B) $2000 \mathrm{~kg} / \mathrm{m}^{3}$
C) $3000 \mathrm{~kg} / \mathrm{m}^{3}$
D) $4000 \mathrm{~kg} / \mathrm{m}^{3}$
E) $6500 \mathrm{~kg} / \mathrm{m}^{3}$
6. A 10 kg iron block (density $=7900 \mathrm{~kg} / \mathrm{m}^{3}$) is hanging from the rope. What is the tension in the rope if the block is immersed in a liquid of density of $850 \mathrm{~kg} / \mathrm{m}^{3}$?
A) 98 N
B) 86 N
C) $72 \mathrm{~N} \quad \mathrm{~T}-\mathrm{mg}+\mathrm{F}_{\mathrm{b}}=0 \quad \mathrm{~T}=\mathrm{mg}-\mathrm{F}_{\mathrm{b}}=98 \mathrm{~N}-11 \mathrm{~N}=87 \mathrm{~N}$
D) 64 N
E) 55 N
7. If wind (density of air $=1.29 \mathrm{~kg} / \mathrm{m}^{3}$) blows at $30 \mathrm{~m} / \mathrm{s}$ parallel to a flat roof having an area of $475 \mathrm{~m}^{2}$, what is the force exerted on the roof?
A) $2.76 \times 10^{5} \mathrm{~N}$, up
B) $8.75 \times 10^{5} \mathrm{~N}$, down
C) $4.26 \times 10^{6} \mathrm{~N}$, up $\quad \mathrm{p}_{1}+1 / 2 \rho \mathrm{v}_{1}{ }^{2}=\mathrm{p}_{2}+1 / 2 \rho \mathrm{v}_{2}{ }^{2} \quad \mathrm{p}_{1}-\mathrm{p}_{2}=1 / 2 \rho\left(\mathrm{v}_{1}{ }^{2}-\mathrm{v}_{2}{ }^{2}\right)=1 / 2 \cdot 1.29 \mathrm{~kg} / \mathrm{m}^{3}\left(30^{2}-\right)=580.5 \mathrm{~Pa}$
D) $6.16 \times 10^{6} \mathrm{~N}$, down $\quad \mathrm{F}=\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right) \mathrm{A}=580.5 \mathrm{~Pa} \cdot 475 \mathrm{~m}^{2}$
E) $1.23 \times 10^{7} \mathrm{~N}$, up
8. In a section of horizontal pipe with a diameter of 3.0 cm , the pressure is 100 kPa and water is flowing with a speed of $1.5 \mathrm{~m} / \mathrm{s}$. The pipe narrows to 2.0 cm . What is the pressure in the narrower region? Treat the water as an ideal incompressible fluid.
A) 95 kPa
B) 48 kPa

$$
\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}
$$

C) 44 kPa
$\mathrm{p}_{1}+1 / 2 \mathrm{QV} 1^{2}=\mathrm{p}_{2}+1 / 2 \mathrm{QV}_{2}{ }^{2}$
D) 230 kPa
E) 67 kPa
9. The temperature of the iron cube, 5 cm on edge, should be changed by what amount for the volume of the cube to increase by $0.35 \mathrm{~cm}^{3}$. (The coefficient of linear expansion of iron is $1.2 \times 10^{-5} \mathrm{per}^{0} \mathrm{C}$)
A) $55^{\circ} \mathrm{C} \quad \Delta \mathrm{V}=\mathrm{V}_{0} \beta \Delta \mathrm{~T} \quad \mathrm{~V}_{0}=\mathrm{a}^{3} \quad \beta=3 \alpha$
B) $167^{\circ} \mathrm{C} \quad 0.35 \mathrm{~cm}^{3}=(5 \mathrm{~cm})^{3} 3 \alpha \Delta \mathrm{~T}$ solve for $\Delta \mathrm{T}$
C) $78^{\circ} \mathrm{C}$
D) $355^{\circ} \mathrm{C}$
E) $431^{\circ} \mathrm{C}$
10. For mercury to expand by 2%, what change in temperature is necessary? $\left(\beta=180 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$.
A) $400^{\circ} \mathrm{C}$
$\Delta V=V_{0} \beta \Delta T$
$\Delta \mathrm{V} / \mathrm{V}_{0}=\beta \Delta \mathrm{T}$
B) $267^{\circ} \mathrm{C}$
$0.02=\beta \Delta \mathrm{T}$
C) $\mathbf{1 1 1}^{\mathbf{0}} \mathrm{C}$
D) $8.2^{\circ} \mathrm{C}$
E) $5.5^{\circ} \mathrm{C}$
11. Approximately how many argon atoms are needed to fill the space between two panes of glass in a window, if the absolute gas pressure is 2 atm ., the volume of the space is $0.2 \mathrm{~m}^{3}$, and the temperature is $30^{\circ} \mathrm{C}$? ($\left.1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}, \mathrm{~N}_{\mathrm{av}}=6.023 \times 10^{23} / \mathrm{mol}, \mathrm{R}=8.31 \mathrm{~J} / \mathrm{Kmol}\right)$
A) $9.7 \times 10^{\mathbf{2 4}} \mathrm{N}$
B) $5.6 \times 10^{20} \mathrm{~N}$
C) $1.3 \times 10^{31} \mathrm{~N} \quad \mathrm{pVT}=\mathrm{nR} \quad \mathrm{T}=273+30^{0} \mathrm{C}=303 \mathrm{~K} \quad \mathrm{p}=2 \times 1.013 \times 10^{5} \mathrm{~Pa}=2.023 \times 10^{5} \mathrm{~Pa}$
D) $6.5 \times 10^{28} \mathrm{~N} \quad$ solve for n
E) $6.5 \times 10^{15} \mathrm{~N} \quad \mathrm{~N}=\mathrm{n} \times 6.023 \times 10^{23}$
12. A balloon originally has a volume of $1.0 \mathrm{~m}^{3}$ when the gas in it is at $20^{\circ} \mathrm{C}$ and under a pressure of 1.0 atm . As it rises in the earth's atmosphere, its volume expands. What will be its new volume if its final temperature and pressure are $-40^{\circ} \mathrm{C}$ and 0.10 atm ?
A) $2.0 \mathrm{~m}^{3} \quad \mathrm{~T}_{1}=293 \mathrm{~K} \quad \mathrm{~T}_{2}-233 \mathrm{~K} \quad \mathrm{p}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2} \quad \mathrm{~V}_{2}=\mathrm{p}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2} / \mathrm{p}_{2} \mathrm{~T}_{1}$
B) $4.0 \mathrm{~m}^{3}$
C) $6.0 \mathrm{~m}^{3} \quad \mathrm{~V}_{2}=1 \mathrm{~atm} * 1 \mathrm{~m}^{3} * 233 \mathrm{~K} / 0.1 \mathrm{~m}^{3} * 293 \mathrm{~K}$
D) $8.0 \mathrm{~m}^{3}$
A) $9.0 \mathrm{~m}^{3}$
13. An 500 g aluminum electric tea kettle has a $500-\mathrm{W}$ heating coil. How long will it take to heat up 1 kg of water from $18^{\circ} \mathrm{C}$ to $98^{\circ} \mathrm{C}$ in this kettle? The specific heat of aluminum is $900 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ and the specific heat of water is $4186 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
A) 2 minutes
B) 7 minutes $\quad \mathrm{Pt}=0.5 \mathrm{~kg} \cdot 900 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}(98-18)+1 \mathrm{~kg} \cdot 4186 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}(98-18)$
C) $\mathbf{1 2}$ minutes
D) 22 minutes
E) 29 minutes
14. A 120 grams of ice at temperature $0^{0} \mathrm{C}$ added to water was able to decrease the temperature of water from $26^{\circ} \mathrm{C}$ to $11^{\circ} \mathrm{C}$. What was the mass of the water? (latent heat of fusion for water is $335000 \mathrm{~J} / \mathrm{kg}$; specific heat of water is $4186 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}$).
A) 128 g
B) $236 \mathrm{~g} \quad 0.120 \mathrm{~kg} \cdot 335000 \mathrm{~J} / \mathrm{kg}+0.129 \cdot 4186(11-0)=\mathrm{m}_{\mathrm{w}} 4186(26-11)$ solve for m_{w}
C) 349 g
D) $\mathbf{6 4 0} \mathrm{g}$
E) 891 g
15. How much heat must be added to 0.05 kg of copper at $25^{\circ} \mathrm{C}$ to melt it completely? $\mathrm{C}_{\mathrm{cu}}=387 \mathrm{~J} / \mathrm{kg} . \mathrm{L}_{\mathrm{f}}=$ $20.7 \times 10^{4} \mathrm{~J} / \mathrm{kg}$, melting point $\mathrm{T}=1083{ }^{\circ} \mathrm{C}$
A) 5 kJ
B) 12 kJ
C) $25 \mathrm{~kJ} \quad \mathrm{Q}=\mathrm{mc}(1083-25)+\mathrm{mLF}_{\mathrm{F}}$
D) 0.5 kJ
E) 31 kJ
16. A thermopane window consists of two glass panes, each 0.6 cm thick, with a $1-\mathrm{cm}$-thick sealed layer of air in between. If inside the room temperature is $23^{0} \mathrm{C}$ and the outside temperature is $0^{\circ} \mathrm{C}$, determine the rate of energy transfer through $1 \mathrm{~m}^{2}$ of the window. ($\mathrm{k}=0.84 \mathrm{~J} / \mathrm{smK} \mathrm{k}_{\text {air }}=0.0234 \mathrm{~J} / \mathrm{smK}$)
A) 62 W
B) 58 W
C) 55 W
D) 65 W
E) 52 W
17. A radiator has an emissivity of 0.7 and its exposed area is $1.2 \mathrm{~m}^{2}$. The temperature of the radiator is $85^{\circ} \mathrm{C}$ and the surrounding temperature is $20^{\circ} \mathrm{C}$. What is the net heat flow rate from the radiator? $\left(\sigma=5.67 \times 10^{-8}\right.$ $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}^{4}$)
A) 855 W
B) $628 \mathrm{~W} \quad \mathrm{P}=\mathrm{e} \sigma \mathrm{A}\left(358 \mathrm{~K}^{4}-294 \mathrm{~K}^{4}\right)$
C) 431 W
D) 325 W
E) 100 W
18. A water heater is operated by a solar power. If the solar collector has an area of $6 \mathrm{~m}^{2}$, and the intensity delivered by sunlight is $550 \mathrm{~W} / \mathrm{m}^{2}$, how long does it take to increase the temperature of 1000 kg of water from $20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$? $\mathrm{c}=4186 \mathrm{~J} / \mathrm{kg}^{0} \mathrm{C}$
A) 0.55 h
B) $2.00 \mathrm{~h} \quad\left(550 \mathrm{~W} / \mathrm{m}^{2} \times 6 \mathrm{~m}^{2}\right) \mathrm{t}=\mathrm{mc} \Delta \mathrm{T}$ solve for time
C) 7.50 h
D) 14.0 h
E) 21.0 h
19. How long will it take to transfer 5.5 MJ of heat through a $2.25 \mathrm{~m}^{2}$ pane of 3 mm thick glass ($\mathrm{k}=0.84$ $\mathrm{J} / \mathrm{sm}^{0} \mathrm{C}$) if the temperature difference is $12^{0} \mathrm{C}$.
A) 208 hr
B) $20.8 \mathrm{hr} \quad \mathrm{Q}=(\mathrm{kA} \Delta \mathrm{T} / \mathrm{l}) \mathrm{t} \quad \mathrm{t}=5.5 \times 10^{6} \mathrm{~J} \cdot 0.003 \mathrm{~m} /\left(0.84 \cdot 2.25 \mathrm{~m}^{2} \cdot 12^{0} \mathrm{C}\right.$
C) 12.1 min
D) 75 s
E) 15 s
20. Gas in a container expands at a constant pressure of 3 atm . Find the work done by the gas if the initialvolume of the gas is 5 liters and the final volume is 10 liters. ($1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}, 1 \mathrm{~L}=0.001 \mathrm{~m}^{3}$)
A) 0 J
B) 150 J
$\mathrm{W}=\mathrm{p}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right) \quad=3 \times 1.013 \times 10^{5} \mathrm{~Pa}\left(5 \times 10^{-3} \mathrm{~m}\right)$
C) 15 J
D) $\mathbf{1 5 0 0} \mathrm{J}$
E) 1.5 J
21. A Carnot engine takes 2000 J from a hot reservoir at 500 K , does some work, and discards some heat to cold reservoir at 350 K . The work done by the engine is closest to
A) 3600 J
B) $3000 \mathrm{~J} \quad \mathrm{e}=1-350 \mathrm{~K} / 500 \mathrm{~K}=0.3 \quad \mathrm{~W}=\mathrm{eQ}_{\mathrm{h}}$
C) 2400 J
D) 1200 J
E) 600 J
22. A refrigerator has a coefficient of performance of 4.0. When removing $2.4 \times 10^{4} \mathrm{~J}$ from inside the refrigerator, how much energy is sent into the environment?
A) $9.6 \times 10^{4} \mathrm{~J}$
B) $\mathbf{3 . 0} \times \mathbf{1 0}^{\mathbf{4}} \mathrm{J}$
C) $1.8 \times 10^{4} \mathrm{~J}$

$$
\mathrm{COP}=\mathrm{Q}_{\mathrm{C}} / \mathrm{W} \quad \mathrm{Q}_{\mathrm{H}}=\mathrm{Q}_{\mathrm{C}}+\mathrm{W} \quad \text { solve for } \mathrm{Q}_{\mathrm{h}}
$$

D) $0.60 \times 10^{4} \mathrm{~J}$
E) $0.20 \times 10^{3} \mathrm{~J}$
23. A mass of 0.40 kg , hanging from a spring with a spring constant of $80 \mathrm{~N} / \mathrm{m}$, is set into an up-and-down simple harmonic motion. What is the speed of the mass when moving through the equilibrium point? The starting displacement from equilibrium is 0.10 m .
A) zero
B) $1.4 \mathrm{~m} / \mathrm{s}$
C) $2.0 \mathrm{~m} / \mathrm{s}$

$$
\mathrm{v}_{\max }=\mathrm{A} \omega \quad \omega=(\mathrm{k} / \mathrm{m})^{0.5}
$$

D) $3.4 \mathrm{~m} / \mathrm{s}$
E) $6.5 \mathrm{~m} / \mathrm{s}$
24. A $0.3-\mathrm{kg}$ block, attached to a spring, executes simple harmonic motion according to $\mathrm{x}=0.8 \cos$ (35 $\mathrm{rad} / \mathrm{s} \cdot \mathrm{t}$), where x is in meters and t is in seconds. Find the spring constant of the spring.
A) $22 \mathrm{~N} / \mathrm{m}$
B) $1500 \mathrm{~N} / \mathrm{m} \quad \omega^{2} \mathrm{~m}=\mathrm{k}$
C) $\mathbf{3 6 8} \mathrm{N} / \mathrm{m}$
D) $160 \mathrm{~N} / \mathrm{m}$
E) $2.8 \mathrm{~N} / \mathrm{m}$
25. A string of linear mass $0.0015 \mathrm{~kg} / \mathrm{m}$ is under a tension of 40 N . What should its length be if the frequency of the second harmonic is 440 Hz ?
A) $0.26 \mathrm{~m} \quad \mathrm{v}=(\mathrm{F} / \mu)^{0.5}=\left(40 \mathrm{~N} / 0.0015 \mathrm{~kg} / \mathrm{m}^{2}\right)^{0.5}=163 \mathrm{~m} / \mathrm{s}$
B) 0.37 m
C) 0.41 m
$f=(v / 2 L) n$ solve for L
D) 0.85 m
E) 1.5 m
26. A standing wave of frequency 45 Hz is set up on a string 6 m long as shown. What is the speed at which wave propagates on the string?

A) $25 \mathrm{~m} / \mathrm{s}$
B) $45 \mathrm{~m} / \mathrm{s} \quad \lambda=2 \mathrm{~L} / \mathrm{n}=12 \mathrm{~m} / 3=4 \mathrm{~m}$
C) $100 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}=\lambda \mathrm{f}$
D) $\mathbf{1 8 0} \mathrm{m} / \mathrm{s}$
E) $220 \mathrm{~m} / \mathrm{s}$
27. The intensity at a distance of 4.0 m from a source that is radiating equally in all directions is $9.85 \times 10^{-7} \mathrm{~W} /$ m^{2}. What is the intensity level in dB at a distance of 6 m ?
A) 17.8 dB
B) 20.0 dB

$$
\begin{aligned}
& \mathrm{I}=\mathrm{P} / 4 \pi \mathrm{r}^{2} \\
& \beta=10 \mathrm{~dB} \log \left(\mathrm{I} / \mathrm{I}_{\mathrm{o}}\right)
\end{aligned}
$$

C) 26.5 dB
D) 32.2 dB
E) $\mathbf{5 6 . 4 ~ d B}$
28. The intensity of a certain sound wave is $2 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$. If its intensity is raised by 30 decibels, what is the new intensity in $\mathrm{W} / \mathrm{m}^{2}$?
A) $6 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2} \quad \beta_{2}-\beta_{1}=10 \mathrm{~dB} \log \left(\mathrm{I}_{1} / \mathrm{I}_{2}\right)$
B) $5 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}$
C) $2 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}$
D) $6 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$
E) $2 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{2}$
29. A $500-\mathrm{Hz}$ whistle is moved toward a listener at a speed of $10.0 \mathrm{~m} / \mathrm{s}$. At the same time, the listener moves at a speed of $20.0 \mathrm{~m} / \mathrm{s}$ in a direction away from the whistle. What is the apparent frequency heard by the listener? (The speed of sound is $340 \mathrm{~m} / \mathrm{s}$.)
A) 463 Hz
B) 485 Hz
C) $533 \mathrm{~Hz} \quad \mathrm{f}=500 \mathrm{~Hz}[(343 \mathrm{~m} / \mathrm{s}-20 \mathrm{~m} / \mathrm{s}) /(343 \mathrm{~m} / \mathrm{s}-10 \mathrm{~m} / \mathrm{s})]$
D) 547 Hz
E) 562 Hz
30. An organ pipe, open at both ends, is 2.2 m long. If the velocity of sound in air is $343 \mathrm{~m} / \mathrm{s}$, the frequency of third harmonic of this pipe is:
A) $116 \mathrm{~Hz} \quad \mathrm{f}=\mathrm{v} \cdot \mathrm{n} / 2 \mathrm{~L}$
B) 234 Hz
C) $366 \mathrm{~Hz} \quad \mathrm{f}=343 \mathrm{~m} / \mathrm{s} \cdot 3 /(2 \cdot 2.2 \mathrm{~m})$
D) 499 Hz
E) 5640 Hz
31. The wiring in a house must be thick enough so it doesn't become so hot to start a fire. What diameter must a copper wire ($\rho=1.68 \times 10^{-8} \Omega \mathrm{~m}$) be if it is to carry a maximum current of 30 A and produce no more than 1.6 W of heat per meter of length?
A) 0.025 mm
B) 0.44 mm

$$
\mathrm{P}=\mathrm{I}^{2} \mathrm{R} \quad \text { solve for } \mathrm{R} \quad \mathrm{R}=\left(1.68 \times 10^{-8} \Omega \mathrm{~m} \cdot 1 \mathrm{~m}\right) / \pi \mathrm{r}^{2}
$$

C) 3.5 mm
D) 8.4 mm solve for $\mathrm{r}, \mathrm{d}=2 \mathrm{r}$
E) 2.2 cm
32. What is the resistance of a light bulb that uses an average power of 125 W when connected to ac power source with peak voltage of 250 V ?
A) 50Ω
B) 90Ω
C) $120 \Omega \quad \mathrm{~V}_{\text {max }}=\mathrm{V}_{\mathrm{rms}} \cdot \sqrt{ } 2 \quad$ solve for $\mathrm{V}_{\mathrm{rms}} \quad \mathrm{P}=\left(\mathrm{V}_{\mathrm{rms}}\right)^{2} / \mathrm{R} \quad$ solve for R
D) 150Ω
E) 250Ω
33. If the terminal voltage of the $9-\mathrm{V}$ battery connected across $10-\Omega$ resistor R is 8.4 V , what is the internal resistance of the battery?
A) 0.9Ω
$8.4 \mathrm{~V}=\mathrm{I} \cdot 10 \Omega \quad$ solve for I
B) 8.0Ω
C) $0.7 \theta \Omega$
D) 6.4Ω
9V-8.4 V = Ir solve for r
E) 0.25Ω

34. The power dissipated in the 6Ω resistor is:
A) 2.25 W
B) 8.64 W
C) $9.56 \mathrm{~W} \quad 12 \mathrm{~V}=\mathrm{I}(4 \Omega+6 \Omega)$ solve for I
D) $12.5 \mathrm{~W} \quad \mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
E) 24.0 W

Consider the circuit below.

35. What is the current in the $20-\Omega$ resistor when emf $=9.0 \mathrm{~V}$?
A) 0.20 A
B) $0.30 \mathrm{~A} \quad \mathrm{R}_{\mathrm{eq}}=(1 / 15 \Omega+1 / 30 \Omega)^{-1}+20 \Omega=10 \Omega+20 \Omega=30 \Omega \quad \mathrm{I}_{20 \Omega}=\varepsilon / \mathrm{R}_{\mathrm{eq}}=9 \mathrm{~V} / 30 \Omega=0.3 \mathrm{~A}$
C) 0.10 A
D) 0.26 A
E) 0.60 A
36. What is the current in the $15-\Omega$ resistor when emf $=9.0 \mathrm{~V}$?
A) $\quad 0.20 \mathrm{~A} \quad \mathrm{~V}^{\prime}=0.3 \mathrm{~A}^{*} 10 \Omega=3 \mathrm{~V} \quad \mathrm{I}_{15}=3 \mathrm{~V} / 15 \Omega=0.2 \mathrm{~A}$
B) $\quad 0.30 \mathrm{~A}$
C) $\quad 0.10 \mathrm{~A}$
D) $\quad 0.26 \mathrm{~A}$
E) $\quad 0.60 \mathrm{~A}$
37. The resistors in the circuit shown in the figure each have a resistance of 700Ω. What is the equivalent resistance between points a and b of this combination?

$$
\mathrm{R}_{\mathrm{eq}}=(1 / 700 \Omega+1 / 700 \Omega)+(1 / 700 \Omega+1 / 700 \Omega)=700 \Omega
$$

A) $\mathbf{7 0 0} \boldsymbol{\Omega}$
B) 2800Ω
C) 175Ω
D) 1400Ω
E) 475Ω

38 The speed of light in a certain material is measured to be $2.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. If the wavelength of the light entering this material is 630 nm , what is the wavelength of the light in the material? $(c=3.0 \times 108 \mathrm{~m} / \mathrm{s})$
A) 300 nm
B) $380 \mathrm{~nm} \quad \mathrm{c}=\mathrm{vn}$ solve for $\mathrm{n} \quad \lambda_{\mathrm{o}}=\lambda \mathrm{n}$ solve for λ
C) $\mathbf{4 5 0} \mathrm{nm}$
D) 630 nm
E) 882 nm
39. How far does light travel in $1.0 \mu \mathrm{~s}$? $\left(c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
A) $3.0 \times 1014 \mathrm{~m}$
B) 0.30 km
C) $3.0 \mathrm{~m} \quad \mathrm{x}=\mathrm{vt}$
D) 30 cm
E) 12 km
40. A 1.5 cm high object is placed 20 cm from the concave mirror with radius of curvature 30 cm . Determine the position of the image and its height
A) $60 \mathrm{~cm}, 4.5 \mathrm{~cm}$
B) $60 \mathrm{~cm}, 17 \mathrm{~cm}$
C) $30 \mathrm{~cm}, 1.5 \mathrm{~cm}$

$$
\mathrm{d}_{\mathrm{i}}=\left(1 / \mathrm{f}-1 / \mathrm{d}_{\mathrm{o}}\right)^{-1} \quad \mathrm{~d}_{\mathrm{i}}=(1 / 15-1 / 20)^{-1}=60 \mathrm{~cm} \quad \mathrm{~m}=60 \mathrm{~cm} / 20 \mathrm{~cm}=3 \quad \mathrm{~h}=\mathrm{h} \cdot \mathrm{~m}
$$

$$
\mathrm{f}=\mathrm{r} / 2
$$

D) $15 \mathrm{~cm},-12 \mathrm{~cm}$
E) $30 \mathrm{~cm}, 6.0 \mathrm{~cm}$
41. Light enters a substance from air at $30.0^{\circ} \mathrm{C}$ to the normal. It continues through the substance at 23.0^{0} to the normal. What would be the critical angle for this substance?
A) 63.9^{0}
B) $\mathbf{5 1 . 4 ^ { 0 }}$
C) 36.7^{0}
D) 12.6^{0}
$\mathrm{n}_{1} \sin 30^{\circ}=\mathrm{n}_{2} \sin 23^{\circ} \quad$ solve for n_{2}
E) 16.6^{0}
$\mathrm{n}_{2} \sin \theta_{\mathrm{cr}}=\mathrm{nsin} 90^{\circ}$ solve for θ_{cr}

42. An optical fiber consists of a core made of glass of $n_{1}=1.68$ surrounded by a cladding made layer of plastics with index of refraction $n_{2}=1.42$. The critical angle θ_{c} for the interface between the glass and the plastics is closest to
A) $\mathbf{5 8 . 0}{ }^{\mathbf{0}}$
$1.68 \sin \theta_{\text {cr }}=1.42 \sin 90^{\circ} \quad$ solve for $\theta_{\text {cr }}$
B) 42.0^{0}

C) 36.5^{0}
D) 22.0^{0}
E) 16.3^{0}
43. A drawing is placed 40 cm in front of a thin lens. If a virtual image forms at a distance of 50 cm from the lens, on the same side as the drawing, what is the focal length of the lens?
A) $45 \mathrm{~cm} \quad \mathrm{~d}_{0}=40 \mathrm{~cm} \quad \mathrm{~d}_{\mathrm{i}}=-50 \mathrm{~cm}$
B) $75 \mathrm{~cm} \quad(40 \mathrm{~cm})^{-1}-(50 \mathrm{~cm})^{-1}=\mathrm{f}^{-1} \quad$ solve for f
C) 90 cm
D) 200 cm
E) +45 cm
44. How far from a $+50-\mathrm{mm}$ focal length lens, such as is used in many $35-\mathrm{mm}$ cameras, must an object be placed so it will form a real image at a distance of 197 mm .
A) 46 mm
B) 52 mm
$\mathrm{f}^{-1}=\mathrm{d}_{\mathrm{o}}^{-1}+\mathrm{d}_{\mathrm{i}}^{-1} \quad$ solve for d_{o}
C) 58 mm
D) $\mathbf{6 7 \mathrm { mm }}$
E) 72 mm
45. Monochromatic light from a helium-neaon laser (wavelength 632.8 nm) is incident normally on a diffraction grating containing 6000 lines $/ \mathrm{cm}$. At what angle the first order maximum can be observed?
A) 5.2^{0}

$$
\mathrm{d}=6000^{-1}=1.67 \times 10^{-4} \mathrm{~cm}=1.67 \times 10^{-6} \mathrm{~m}
$$

B) 11.8^{0}
C) 22.3^{0}
D) 31.4^{0}
$d \sin \theta=m \lambda \quad m=1 \quad$ solve for θ
E) 43.2^{0}
46. A diffraction grating with 4000 lines per cm produces a second -order bright fringe at an angle of 38.5°. What is the wavelength of the light shining on the grating?
A) 345 nm
B) 490 nm
$\mathrm{d}=0.01 \mathrm{~m} / 4000=2.5 \times 10^{-6} \mathrm{~m}$ C) 550 nm D) 620 nm E) 778 nm

