INSTRUCTOR: Halina Opyrchal, email: opyrchal@njit.edu, Office: TIER 454

Office hours: Monday, 2:30 – 3:55 PM Thursday, 2:30 -3:55 PM

PRE-REQUISITES AND CO-REQUISITES:
- Pre-requisites: Phys 102 with grade C or better
- Co-requisites: Phys 103A (the lab course) unless previously taken

FAILURE TO MEET EITHER CO-Requisites or PRE-Requisites will result in student being dropped from class.

COURSE MATERIAL:

 ▪ Classroom Response System called “iClickers”: Ask your professor if he will be using an “iClicker”. They are available in the NJIT bookstore. If they are used in your class, please bring your clicker to each class.

 ▪ Mastering Physics Homework System: Be sure that your textbook is sold bundled with a Mastering Physics student access code card. Each student must enroll in the course specified by his/her instructor. Homework assignments will be posted on-line. Students login, download and solve the assigned problems, and submit answers to the automated grading system.

NOTE: THE LABORATORY COURSE, PHYS 103A, MUST BE TAKEN CONCURRENTLY WITH PHYS 103 THE STUDENT MUST REGISTER FOR BOTH THE LEC/REC AND THE LAB COURSE. WITHDRAWAL FROM EITHER COURSE WILL CAUSE A SIMULTANEOUS WITHDRAWAL FROM BOTH COURSES. FOR THE LABORATORY COURSE YOU WILL NEED PHYS 103A LAB MANUAL 6TH EDITION

CLASS ATTENDANCE: The NJIT attendance policy is the following: “It is expected that students will attend all classes. Your teacher will take attendance at all classes and exams. More than 3 unexcused absences (in total) are excessive.” If you have excusable absences, contact your instructor or the Dean of Students - (973) 596-3466, Room 255 Campus Center. If you have to miss class, attend the next physics tutoring session and let your professor know. Moodle is required for this course. Lecture Notes, some assignments, information and grades will be on Moodle.

HELP: Visit or email your instructors if you are having trouble with the course; do not simply hope for a miracle and fall further behind. The Physics Dept. office on the 4th floor of Tiernan has specific information on tutoring. Physics tutoring is available through the CAPE organization, and possibly elsewhere.

GRADING: Your final letter grade in Phys 103 will be based on a composite score for term’s work that includes the common exam scores, the final exam, lecture quizzes or iClickers, and the homework score.

1) Common Exams Three common exams will be given during the semester.

The schedule is:

- **Common Exam 1**: Wednesday, October 04 4:15 – 5:45 PM
- **Common Exam 2**: Wednesday, November 01 4:15 – 5:45 PM
- **Common Exam 3**: Wednesday, December 06 4:15 – 5:45 PM

The general policy is that students who miss a common exam will receive a score of zero for that Exam. That score will be included in the calculation of your final grade. Students that miss two common exams automatically fail the course. Students who anticipate an absence from a common exam should discuss their situation with their instructor PRIOR TO their absence. In order to be qualified to receive a "make-up" common exam score, the student should present documentation for not being able to take the test as scheduled. As is the standard policy of NJIT, this documentation should be presented to the student’s Physics 103 instructor AND to the Dean of Students - (973) 596-3466, 2nd floor Campbell Entry. BOTH the Physics 103 instructor and Dean of Students must concur in permitting a "make-up" common exam. Make-ups for exams 1, 2 and 3 are only at 6-7:30PM on the exam day and only with advance permission from both your instructor and the Dean of Students.
2 Lecture Quizzes In-class I-Clicker Questions/quizzes covering the preceding or current work will be given during lectures and/or recitations. Those scores count toward your final course grade. **There are no make-ups for in class activities.** Students missing an I-Clicker question/quiz will receive a grade of zero for that item.

3) Homework Homework assignments will be posted on-line using the Mastering Physics Homework System. Please register for your section using login: www.masteringphysics.com. The recommended problems from the text (see syllabus) will be discussed during the recitation class.

Course codes to register to homework classes are:
Section 001 – FALL2017PHYS103001 Section 003 – FALL2017PHYS103003

4) Final Exam Comprehensive Final Exam will be given during Final Exam Period.

Final Letter Grades: Here are the approximate weights to be used for calculating the composite score:

- 51% for all three common exams (17% each)
- 29% for the final exam
- 12% for the total of homework work
- 8% for the all in-class quizzes/Iclickers

The conversion of numerical to letter grades is as follows:

- > 80% A;
- > 75% to 80% B+;
- > 66% to 75% B;
- > 58% to 66% C+;
- > 50% - 58% C;
- < 50 D and F.

Final grades are not negotiable: A score of 79.999999% is a B+, not an A.

HONOR CODE STATEMENT: NJIT has a zero-tolerance policy for cheating of any kind and for student behavior that disrupts learning by others. Violations will be reported to the Dean of Students. The penalties range from a minimum of failure in the course plus disciplinary probation up to expulsion from NJIT. Avoid situations where your own behavior could be misinterpreted as dishonorable. **Students are required to agree to the NJIT Honor Code on each exam, assignment, quiz, etc. for the course.**

Turn off all cellular phones, wireless devices, computers, and messaging devices of all kinds during classes and exams. Please do not eat, drink, or create noise in class that interferes with the work of other students or instructors. Creating noise or otherwise interfering with the work of the class will not be tolerated.

LEARNING OUTCOMES: For this course you can expect to be assessed on the following learning outcomes:

1. Comprehend the meaning of equations governing the fluid at rest and fluid in motion. Understand the extension of conservation of energy and mass equations to fluid dynamics.
2. Define temperature scales.
3. Understand the phenomena of thermal expansion and Ideal Gas Law.
4. Understand the concept of heat and comprehend the meaning of equations governing the calorimetry and heat transfer.
5. Understand the basics concepts of thermodynamics.
6. Comprehend the meaning of equations governing oscillations and mechanical waves and apply those concepts to solve related problems.
7. Understand the concept of electric charge, electric field, electric potential, and electric current. Apply those concepts to solve simply circuits.
8. Understand the basic concepts of geometrical optics and learn how to apply them for lenses and optical fibers.
9. Comprehend the wave theory of light and apply it understand the phenomena of interference and diffraction.

Any changes to the syllabus will be consulted with students.
<table>
<thead>
<tr>
<th>Week</th>
<th>Date Range</th>
<th>Topic</th>
<th>Text Study</th>
<th>Recommended Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Sept. 5 – Sept. 10</td>
<td>Introduction, Solids, Density and Pressure, Fluids at Rest</td>
<td>Chapt. 9 Sect. 5-6</td>
<td>p. 285 prob. 2, 12, 14, 19, 23 27, 34, Intro</td>
</tr>
<tr>
<td>Week 2</td>
<td>Sept. 11 – Sept. 17</td>
<td>Fluids in Motion</td>
<td>Chapt. 10 Sect 8-10</td>
<td>p. 285 prob. 47, 48, 49, 50, 53, 80</td>
</tr>
<tr>
<td>Week 3</td>
<td>Sept. 18 – Sept. 24</td>
<td>Temperature, Thermal Expansion, The Ideal Gas Law</td>
<td>Chapt. 13 Sect. 1-8</td>
<td>p.385 prob. 5, 12, 15, 19, 24, 31,39, 78</td>
</tr>
<tr>
<td>Week 4</td>
<td>Sept. 25 – Oct. 1</td>
<td>Specific Heat, Calorimetry, Latent Heat,</td>
<td>Chapt. 14 Sect 1-5</td>
<td>p.408 prob. 2, 13, 14, 25, 27, 34, D</td>
</tr>
<tr>
<td>Week 5</td>
<td>Oct. 02 – Oct. 08</td>
<td>Transfer of Heat</td>
<td>Chapt. 14 Sect 6 - 8</td>
<td>p.408 prob. 38, 42, 43, 54</td>
</tr>
<tr>
<td>Week 6</td>
<td>Oct. 09 – Oct. 15</td>
<td>Thermodynamics</td>
<td>Chapt. 15 Sect. 1-7</td>
<td>p. 438 prob. 1, 18, 19, 24, 32</td>
</tr>
<tr>
<td>Week 7</td>
<td>Oct. 16 – Oct. 22</td>
<td>Simple Harmonic Motion, Waves, Standing Waves</td>
<td>Chapt. 11 Sect. 1-12</td>
<td>p. 322 prob.3, 7, 8, 14,18, 27, 36, 37, 40, 49, 52, B1</td>
</tr>
<tr>
<td>Week 8</td>
<td>Oct. 23 – Oct. 29</td>
<td>Sound</td>
<td>Chapt. 12 Sect. 1-7</td>
<td>p. 354 prob. 3, 4, 9, 14, 27, 28, 56, 63</td>
</tr>
<tr>
<td>Week 9</td>
<td>Oct. 30 – Nov. 5</td>
<td>Electric Charges, Electric Field, Electric Potential</td>
<td>Chapt. 16 Sect. 1-5,7</td>
<td>p. 468 prob. 2, 3, 19, 21, 496 prob. 3, 4, 6, 9</td>
</tr>
<tr>
<td>Week 10</td>
<td>Nov. 6 – Nov. 12</td>
<td>Electric Current, Resistance, Electric Power</td>
<td>Chapt. 18 Sect. 1-7</td>
<td>p. 521 prob.1, 9, 13, 17, 28, 37, 47, 54</td>
</tr>
<tr>
<td>Week 11</td>
<td>Nov. 13 – Nov. 19</td>
<td>Electric Circuits</td>
<td>Chapt. 19 Sect. 1-5, 7</td>
<td>p. 552 prob. 1, 4, 12, 15, 16, 17, 215</td>
</tr>
<tr>
<td>Week 12</td>
<td>Nov. 20 – Nov. 26</td>
<td>Light: Reflection, Mirrors, Refraction</td>
<td>Chapt . 22 Sect 3-4</td>
<td>p. 673 prob. 4, 9, 12, 25, 26, 28, 29, 72</td>
</tr>
<tr>
<td>Week 13</td>
<td>Nov. 27 – Dec. 03</td>
<td>Light: Total Internal Reflection, Lenses</td>
<td>Chapt. 23 Sect. 4-8</td>
<td>p. 673 prob. 35, 36, 41, 43, 47, 48</td>
</tr>
<tr>
<td>Week 14</td>
<td>Dec. 04 – Dec. 10</td>
<td>Interference, Diffraction Grating,</td>
<td>Chapt. 24 Sect. 1,3-6</td>
<td>p. 707 prob. 1, 4, 7, 33, 38,</td>
</tr>
<tr>
<td>Week 15</td>
<td>Dec. 11 – Dec. 13</td>
<td>Interference in Thin Films, Resolution</td>
<td>Chapt. 24 Sect. 8</td>
<td>p. 707 prob. 54, 81, 82, 84, 740 prob. 53, 55, 67, 83, 85,</td>
</tr>
</tbody>
</table>

IMPORTANT DATES

NOVEMBER 21, TUESDAY FOLLOWS THURSDAY SCHEDULE
NOVEMBER 22, WEDNESDAY FOLLOWS FRIDAY SCHEDULE
THANKSGIVING RECESS – NOVEMBER 23-26
READING DAY - DECEMBER 14
FINAL EXAM PERIOD – DECEMBER 15-21