Course Outline
Physics 102 Sect. 008 for non-COAD students
Spring 2016

Dr. Oktay Gokce
456 Tiernan Hall
973-596-3571 (office)
gokce@njit.edu

Lecture and recitation for Section 008:
Tuesday and Friday 2:30 – 3:55 pm, Tiernan 112

Office hours: Friday 4:00 – 5:30 pm, or by appointment

Course Website: http://moodle.njit.edu/

Pre- and Co-requisite Courses
Prerequisite: Satisfactory completion of two high school mathematics courses and two high school science courses. This course is intended for students in computer science (B.A. only), STS and other disciplines requiring laboratory science electives. Students from College of Architecture and Design should take different sections of Phys 102.

Laboratory - Physics 102A
The laboratory component of the course is Phys 102A. This laboratory course may be optional for your major; confirm it with your department. If it is required for your major, it must be taken concurrently unless you have previously taken and passed Phys 102A. The grading for the laboratory is separate from the course/recitation (Phys 102) and the grades are given by the laboratory instructors. Latest edition of Lab manual “Physics 102A Laboratory Manual” can be purchased from NJIT Bookstore.

YOU MUST REGISTER FOR THE LECTURE/RECITATION (Phys 102) AND THE LABORATORY COURSE (Phys 102A) SEPARATELY. WITHDRAWAL FROM ANY OF THESE WILL CAUSE A SIMULTANEOUS WITHDRAWAL FROM ALL Phys 102 COURSES.

Course Materials
Textbook:
Physics - Principles with Applications, 7th ed. by Giancoli (Publisher: Pearson)

Mastering Physics Online Homework System:
Be sure that your textbook is sold bundled with a Mastering Physics student access code card. You can also buy the student access code card separately either from NJIT bookstore or online. Homework assignments will be posted on-line. Students login, download and solve the assigned problems, and submit answers to the automated grading system. Instruction can be found on the student access code card. To enroll for this section of the course, use course ID: MPGOKCE81032

Email:
NJIT email will be routinely used for announcements and to distribute material. Be sure check the NJIT email every day.
Attendance
Attendance at lectures and recitations is mandatory; it may constitute a portion of the final grade. Missing more than three lectures will be reported to the Dean of Freshman Studies throughout the semester and can result in failing the course. Students with absences need to discuss their extenuating circumstances for missing the classes with the Dean.

Exams
There will be three Common Exams and a Final Exam during the term. The exam schedule is:
- Common Exam 1: Wednesday, February 24, 4:15 – 5:45 pm
- Common Exam 2: Wednesday, March 23 28, 4:15 – 5:45 pm
- Common Exam 3: Wednesday, April 20, 4:15 – 5:45 pm
Final Exam: To be announced
There will be no makeup exams.

Grading
Final grades will be based on a composite score for the term’s work that includes three common exams, the final exam, homework score, written lecture quiz, iClicker quiz, and class participation. The approximate weights we expect to use in calculating the composite score are:
- 48 % for three Common Exams (16% for each)
- 33 % for Final Exam
- 12 % for Homework grade
- 7 % for Lecture Quiz + Class participation
Extra credit may be given for active class participation, etc. Negative credit may be applied for lateness, creating noise, or otherwise interfering with class work.

The cutoff percentages for various letter grades will be in the range of 84.0% for A, 76.0 % for B+, 68.0% for B, 60.0% for C+, 52.0% for C, 44.0% for D, F below 44.0 %.

C or better grade is required to take further physics courses. If you get D in Physics 102, you cannot take the next level physics course.

Reading Assignments
The text readings are listed below. You should read the assigned sections of the text before the lecture covering that material.

Homework
It is almost impossible to succeed in this course without working a lot of problems: do the homework. Each student must download the weekly homework assignments from Mastering Physics online homework system, work the problems, and submit the solutions online before each assignment is due. Late work will not be accepted. See Course Materials section above.

Honor Code Violations or Disruptive Behavior
NJIT has a zero-tolerance policy for cheating of any kind and for student behavior that disrupts learning by others. Incidents will be immediately reported to the Dean of Students. The penalties for violations range from a minimum of failure in the course with disciplinary probation up to expulsion from NJIT. Avoid situations where your own behavior could be misinterpreted, even if it is honorable. Students are required to agree to the NJIT Honor Code on each exam. Turn off all cellular phones, wireless devices, computers, and messaging devices of all kinds during exams. Please do not create noise in class that interferes with the work of students or instructors.
Help
Students are encouraged to meet with their instructor during their office hours. In addition, The Learning Center (TLC) [http://www.njit.edu/tlc/](http://www.njit.edu/tlc/, 973-596-2992] located in Kupfrian 200, is open to all students and provides tutoring by experienced students. Physics Department also offers tutoring as posted on http://physics.njit.edu/students/, for which students do not need to sign up but just can go to open sessions provided in the schedule.

Learning Outcomes:
For this course, you can expect to be assessed on the following learning outcomes:

1. Recall the definitions and relationships involving position, velocity, speed, acceleration, vectors, Newton’s Laws, circular motion, free-body diagrams, friction, work, energy, linear and angular momentum, torque, angular velocity and acceleration, and gravitation.
2. Apply the equations governing 1-D and 2-D constant acceleration to mechanical systems for various initial conditions. Calculate unknown quantities based on physical relationships, initial conditions, and known quantities.
3. Comprehend the meaning of the equations governing net force and acceleration (Newton’s Laws), and be able to manipulate them in conjunction with a free-body diagram to obtain any desired quantitative relationship. Understand the extension of these equations to rotational motion, and gravitation.
4. Generalize the concepts underlying the equations of motion, such as work, kinetic and potential energy, conservation of energy, and equilibrium.
5. Comprehend the meaning of equations governing momentum, impulse, and collisions. Apply the equations governing momentum, impulse, and collisions mechanical systems for various initial conditions. Understand under what conditions momentum is conserved and how to use this relation to calculate unknown quantities based on physical relationships, initial conditions, and known quantities.
6. Understand the extension of linear motion equations to rotational motion. Comprehend the meaning of the equations governing rotational motion and acceleration, and be able to manipulate them in conjunction with a free-body diagram to obtain any desired quantitative relationship.
2016 Spring Course Schedule for Phys 102-008

<table>
<thead>
<tr>
<th>Dates</th>
<th>Lecture Topics</th>
<th>Text Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 19 – 22</td>
<td>Introduction, Measurement and Units</td>
<td>Ch 1, Sec 1-6</td>
</tr>
<tr>
<td>Jan 26 – 29</td>
<td>Motion in One Dimension</td>
<td>Ch 2, Sec 1-8</td>
</tr>
<tr>
<td>Feb 2 – 5, 9</td>
<td>Vectors and Two-Dimensional Motion</td>
<td>Ch 3, Sec 1-6</td>
</tr>
<tr>
<td>Feb 12, 16</td>
<td>The Laws of Motion</td>
<td>Ch 4, Sec 1-5</td>
</tr>
<tr>
<td>Feb 19, 22</td>
<td>The Laws of Motion</td>
<td>Ch 4, Sec 6-8</td>
</tr>
<tr>
<td>2/24 W</td>
<td>Common Exam 1 (4:15-5:45pm)</td>
<td>Ch. 1 - Ch.3</td>
</tr>
<tr>
<td>Feb 26, March 1</td>
<td>Energy, Work, Kinetic Energy, Work-Energy Theorem</td>
<td>Ch. 6, Sec. 1, 3</td>
</tr>
<tr>
<td>March 4, 8</td>
<td>Energy, Potential Energy, Mechanical Energy, Energy conservation, Power</td>
<td>Ch. 6, Sec. 4-7, 9, 10</td>
</tr>
<tr>
<td>March 11</td>
<td>Momentum and Collisions, Momentum, Impulse, Conservation of Momentum</td>
<td>Ch. 7, Sec. 1-3</td>
</tr>
<tr>
<td>March 13 – 20</td>
<td>Spring Recess</td>
<td></td>
</tr>
<tr>
<td>March 22</td>
<td>Momentum and Collisions - cont’d</td>
<td></td>
</tr>
<tr>
<td>3/23 W</td>
<td>Common Exam 2 (4:15-5:45pm)</td>
<td>Ch. 4, Ch.6</td>
</tr>
<tr>
<td>March 25</td>
<td>Momentum and Collisions, Collisions</td>
<td>Ch 7, Sec. 4-8, 10</td>
</tr>
<tr>
<td>March 29 – April 1</td>
<td>Rotational Motion, Rotational Dynamics I</td>
<td>Ch 8, Sec 1-3</td>
</tr>
<tr>
<td>April 5 –8, 12</td>
<td>Rotational dynamics II</td>
<td>Ch 8, Sec. 4-8</td>
</tr>
<tr>
<td>April 15, 19</td>
<td>Static Equilibrium</td>
<td>Ch. 9, Sec. 1-4</td>
</tr>
<tr>
<td>4/20 W</td>
<td>Common Exam 3 (4:15-5:45pm)</td>
<td>Ch. 7, Ch. 8</td>
</tr>
<tr>
<td>April 22</td>
<td>Circular motion</td>
<td>Ch. 5, Sec. 1-4</td>
</tr>
<tr>
<td>April 26 – 29</td>
<td>The Law of Gravity</td>
<td>Ch 5, Sec. 5-8</td>
</tr>
<tr>
<td>May 3 (Friday sch)</td>
<td>Discussions/review-Last day classes</td>
<td></td>
</tr>
<tr>
<td>Date to be announced</td>
<td>Final Exam</td>
<td>Everything learned in class</td>
</tr>
</tbody>
</table>

* The professor will discuss changes to the syllabus during class if they arise.