Chapter 1:Vectors and Mathematics Formulas

Vector magnitude: $|\vec{A}| = \sqrt{A_x^2 + A_y^2}$ or $\sqrt{A_x^2 + A_y^2 + A_z^2}$

Vector direction: $\tan \theta = \frac{A_y}{A_x}$

Dot Product: $\vec{A} \cdot \vec{B} = \vec{A_x} B_x + A_y B_y + A_z B_z = |\vec{A}| |\vec{B}| \cos \theta$

Cross Product: $\hat{i} \times \hat{j} = \hat{k}$ $\hat{j} \times \hat{k} = \hat{i}$ $\hat{k} \times \hat{i} = \hat{j}$

 $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$

 $\vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} + (A_z B_x - A_x B_z) \hat{j}$

 $+(A_xB_y-A_yB_x)\hat{k}$

 $|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta$

Quadratic formula: $ax^2 + bx + c = 0$, $x = \left(-b \pm \sqrt{b^2 - 4ac}\right)/(2a)$

Derivatives, Integrals: $\frac{d}{dt}t^n = nt^{n-1}$ and $\int t^n dt = \frac{1}{n+1}t^{n+1}$

Circumference: $C = 2\pi r$

Sphere area, volume: $A = 4\pi r^2$, $V = \frac{4}{3}\pi r^3$

Chapter 2: One-Dimensional Motion

Displacement: $\Delta x = x_f - x_0$

Constant velocity: $x_f = x_0 + vt$ or $\Delta x = vt$

Kinematics: $v_f = v_0 + at$

 $\Delta x = v_0 t + \frac{1}{2}at^2$ $v_f^2 = v_0^2 + 2a\Delta x$

 $v_f + v_0 = 2\Delta x/t$

Velocity: $v_{\text{avg}} = (x_f - x_0)/(t_f - t_0), v(t) = dx/dt$

Acceleration: $a_{\text{avg}} = (v_f - v_0)/(t_f - t_0), \ a(t) = dv/dt$

Acceleration due to gravity: $g = 9.8 \text{ m/s}^2$

Chapter 3: Two- and Three-Dimensional Motion

Position vector: $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

Average velocity $\vec{v}_{\text{avg}} = (\vec{r}_f - \vec{r}_0)/(t_f - t_0)$

Instantaneous velocity: $\vec{v}(t) = d\vec{r}/dt$

Average acceleration: $\vec{a}_{avg} = (\vec{v}_f - \vec{v}_0)/(t_f - t_0)$

Instantaneous acceleration: $\vec{a}(t) = d\vec{v}/dt$

Radial acceleration: $a_{\rm rad} = v^2/r = 4\pi^2 r/T^2$

Chapter 4: Newton's Laws of Motion

First Law: $\vec{F}_{net} = 0 \longleftrightarrow \vec{v} = constant$

Second Law: $\vec{F}_{net} = m\vec{a}$ Third Law: $\vec{F}_{12} = -\vec{F}_{21}$

Chapter 5: Applying Newton's Laws

Kinetic and static friction: $f_k = \mu_k F_N$ and $f_s \leq \mu_s F_N$

Normal force: $F_N = mg$ on horizontal surface,

 $F_N = mg\cos\theta$ on incline

Chapter 6: Work and Kinetic Energy

Work done by a constant force: $W = \vec{F} \cdot \vec{s} = Fs \cos \theta$

Kinetic energy: $K = \frac{1}{2}mv^2$

Work-energy theorem: $W_{\text{tot}} = K_2 - K_1 = \Delta K$

Work by a non-constant force: $W_{a\to b} = \int_a^b \vec{F} \cdot d\vec{r}$

Power: $P = \Delta W/\Delta t$ or dW/dt

 $P = \vec{F} \cdot \vec{v}$

Chapter 7: Potential Energy and Energy Conservation

Hooke's Law: $F_x = kx$

Work done by a spring: $W = \frac{1}{2}k(x_0^2 - x_f^2)$ Work done by gravity: $W = -mq\Delta u$

Gravitational potential energy: $U_g = mgh$

Elastic potential energy: $U_E = \frac{1}{2}kx^2$

Conservation: $(K + U_q + U_E)_0 + W_{\text{other}} = (K + U_q + U_E)_f$

Force and Potential Energy: $F_x = -dU(x)/dx$

Conservative forces: $W_{\rm ab} = U_{\rm a} - U_{\rm b} = -\Delta U$

Chapter 8: Momentum, Impulse, and Collisions

Momentum: $\vec{p} = m\vec{v}$

Force and momentum: $\vec{F} = \Delta \vec{p}/\Delta t$ or $d\vec{p}/dt$

Impulse: $\vec{J} = \Delta \vec{p} = m\Delta \vec{v} = \vec{F}_{avg}\Delta t$

 $\vec{J} = \int_{t_1}^{t_2} \vec{F}(t) dt$

Conservation: $m_A \vec{v}_A + m_B \vec{v}_B + \ldots = m_A \vec{v}_A' + m_B \vec{v}_B' + \ldots$

 $(\vec{v}_A{}', \vec{v}_B{}')$ are post-collision velocities)

Completely inelastic collision: $m_A \vec{v}_A + m_B \vec{v}_B = (m_A + m_B) \vec{v}_f$

1-D Elastic collisions: $v_A + v_A' = v_B + v_B'$

Center of mass: $\vec{r}_{\text{CM}} = (m_1 \vec{r}_1 + m_2 \vec{r}_2 + ...)/(m_1 + m_2 + ...)$

Chapter 9: Rotation of Rigid Bodies

Angular displacement: $\Delta \theta = \theta_f - \theta_0$

Constant velocity: $\theta_f = \theta_0 + \omega t$ or $\Delta \theta = \omega t$

Kinematics: $\omega_f = \omega_0 + \alpha t$

 $\Delta \theta = \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega_f^2 = \omega_0^2 + 2\alpha \Delta \theta$

 $\omega_f - \omega_0 + 2\alpha \Delta \theta$ $\omega_f + \omega_0 = 2\Delta \theta / t$

Velocity: $\omega_{\text{avg}} = (\theta_f - \theta_0)/(t_f - t_0), \, \omega(t) = d\theta/dt$

Acceleration: $\alpha_{\text{avg}} = (\omega_f - \omega_0)/(t_f - t_0), \ \alpha(t) = d\omega/dt$

Angular \rightarrow tangential: $\Delta s = r\Delta\theta$, $v_{\text{tan}} = r\omega$, $a_{\text{tan}} = r\alpha$

Radial acceleration: $a_{\rm rad} = r\omega^2$ Rotational kinetic energy: $K_{\rm rot} = \frac{1}{2}I\omega^2$

CM Moment of Inertia: Point mass, mr^2 . Disk, $\frac{1}{2}mR^2$. Ring, mR^2 .

Spherical shell, $\frac{2}{3}mR^2$. Sphere, $\frac{2}{5}mR^2$.

Rod (about center), $\frac{1}{12}mL^2$

Parallel axis theorem: $I = I_{CM} + md^2$

Chapter 10: Dynamics of Rotational Motion

Torque (magnitude): $\tau = rF \sin \theta$ Torque (vector): $\vec{\tau} = \vec{r} \times \vec{F}$

Newton's 2nd Law: $\tau_{\rm net} = I\alpha$

 $K = \frac{1}{2}mv_{\rm cm}^2 + \frac{1}{2}I_{\rm cm}\omega^2$ Translation/rotation:

No-slip condition: $v_{\rm cm} = R\omega$

 $W = \tau \Delta \theta$ Work done by constant torque:

> Work-energy theorem: $W_{\text{tot}} = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_0^2$ Angular momentum: $\vec{L} = \vec{r} \times \vec{p}$ (particle)

> > $\vec{L} = I\vec{\omega}$ (rigid body rotating about axis)

Conservation of angular momentum: $I_A\omega_A + I_B\omega_B = I'_A\omega'_A + I'_B\omega'_B$

(primes indicate 'final')

Chapter 11: Static Equilibrium

Static equilibrium conditions: $\vec{F}_{\text{net}} = 0$

 $\vec{\tau}_{\rm net} = 0$ about any point

Chapter 12: Fluid Mechanics

Density: $\rho = m/V$ or $m = \rho V$

Density of water: $\rho_{\rm H_2O} = 1000 \text{ kg/m}^3$

Pressure: P = F/A

Atmospheric pressure: $P_{\rm atm} = 1.01 \times 10^5 \text{ Pa}$

Fluid pressure: $P = P_0 + \rho q h$ Absolute pressure $P_{\text{abs}} = P_q + P_{\text{atm}}$ Buoyant force: $F_B = \rho_f g V_{\text{obj}}$

Volume flow rate: dV/dt = Av

Continuity equation: $A_1v_1 = A_2v_2$ (incompressible fluid)

Bernoulli Equation: $P + \rho g h + \frac{1}{2} \rho v^2 = \text{constant}$

Chapter 13: Gravitation

Gravitational constant: $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

Mass of the Earth: $M_E = 5.97 \times 10^{24} \text{ kg}$ Radius of the Earth: $R_E = 6.38 \times 10^6 \text{ m}$

Force of gravity: $F_G = GMm/r^2$ Local acceleration due to gravity: $q = GM_E/R_E^2$

Gravitational potential energy: U = -GMm/rOrbits: $v = 2\pi r/T$

 $v^2 = GM/r$

 $T^2 = 4\pi^2 r^3/(GM)$ (Kepler's Law) $T^2/r^3 = \text{constant} = 4\pi^2/(GM)$

Escape velocity from surface: $v_{\rm esc} = \sqrt{2GM/R}$, R = planet radius