NJIT Physics 121 Formula Sheet

Fundamentals

Electron: $e = -1.6 \times 10^{-19} \text{ C}, m_e = 9.11 \times 10^{-31} \text{ kg}$

Proton: $m_p = 1.67 \times 10^{-27} \text{ kg}$

Number of excess electrons N = |Q|/e

Electromagnetic constants: $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$

 $1/(4\pi\epsilon_0) = k = 9 \times 10^9 \text{ (N·m}^2)/\text{C}^2$

 $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$

Acceleration due to gravity: $g = 9.8 \text{ m/s}^2$

Preliminaries: Vectors, General Mathematics

Vector magnitude: $|\vec{A}| = \sqrt{A_x^2 + A_y^2}$ or $\sqrt{A_x^2 + A_y^2 + A_z^2}$

Vector direction: $\tan \theta = \frac{A_y}{A_x}$

Dot product: $\vec{A} \cdot \vec{B} = \vec{A}_x B_x + A_y B_y + A_z B_z = |\vec{A}| |\vec{B}| \cos \theta$

Cross product: $\hat{i} \times \hat{j} = \hat{k}$ $\hat{j} \times \hat{k} = \hat{i}$ $\hat{k} \times \hat{i} = \hat{j}$

 $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$

 $\vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} + (A_z B_x - A_x B_z) \hat{j}$

 $+(A_xB_y - A_yB_x)\hat{k}$ $|\vec{A} \times \vec{B}| = |\vec{A}||\vec{B}|\sin\theta$

Quadratic formula: $ax^2 + bx + c = 0$, $x = \left(-b \pm \sqrt{b^2 - 4ac}\right)/(2a)$

Integrals: $\int dx/x = \ln x$; $\int dx/\sqrt{a^2 + x^2} = \ln(x + \sqrt{a^2 + x^2})$

 $\int dx \left(a^2 + x^2\right)^{-\frac{3}{2}} = x/\left(a^2 \sqrt{a^2 + x^2}\right)$

 $\int x \left(a^2 + x^2\right)^{-\frac{3}{2}} dx = -1/\sqrt{a^2 + x^2}$

Circumference: $C = 2\pi R$

Sphere area, volume: $A = 4\pi R^2$, $V = \frac{4}{3}\pi R^3$

Cylinder and cone volume: $V = \pi R^2 h$ (cylinder), $V = \frac{1}{3}\pi R^2 h$ (cone)

Physics 111

Kinematics: $v_f = v_0 + at$

 $\Delta x = v_0 t + \frac{1}{2}at^2$

 $v_f^2 = v_0^2 + 2a\Delta x$

 $v_f + v_0 = 2\Delta x/t$

Newton's Laws: $\vec{F}_{\text{net}} = 0 \longleftrightarrow \vec{v} = \text{constant}$

 $\vec{F}_{\rm net} = m\vec{a}$

 $\vec{F}_{12} = -\vec{F}_{21}$

Uniform circular motion $\omega = v/R$, $a_c = v^2/R = \omega^2 R$

Work and power: $W = \int_a^b \vec{F} \cdot d\vec{r}, P = W/t = \vec{F} \cdot \vec{v}$

Kinetic energy: $K = \frac{1}{2}mv^2$

Work-Energy Theorem $\Delta K = W_{\text{net}}$

Potential energy (conservative forces): $W_{ab} = U_a - U_b = -\Delta U$

Chapter 21: Electric Charge and the Electric Field

Coulomb's Law: $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$

Force on a test charge q_0 : $\vec{F} = q_0 \vec{E}$

Field of a point charge: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$

Charge density: $\lambda = Q/L$ (linear) $\sigma = Q/A$ (area)

 $\rho = Q/V \text{ (volume)}$

Field of an infinite line of charge: $E = \frac{\lambda}{2\pi\epsilon_0 r}$

Field of an infinite nonconducting plane of charge: $E = \frac{\sigma}{2\epsilon_0}$

Chapter 22: Gauss's Law

Flux of a uniform field through a flat surface: $\Phi_E = EA \cos \phi$

Flux of a nonuniform field: $\Phi_E = \oint \vec{E} \cdot d\vec{A}$

Gauss's Law: $\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\epsilon_0}$

Field at the surface of a conductor: $E = \frac{\sigma}{\epsilon_0}$

Solid insulating sphere, radius R, with charge Q distributed uniformly throughout volume: $E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$ (outside, r > R)

 $E = \frac{1}{4\pi\epsilon_0} \frac{Qr}{R^3} \text{ (inside, } r < R)$

23: Electric Potential

Potential energy, two charges: $U = \frac{1}{4\pi\epsilon_0} \frac{qq_0}{r}$

Electric potential: $V = U/q_0$

Potential of a point charge: $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$

Superposition: $V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$

Charge distribution: $V = \frac{1}{4\pi\epsilon_0} \int_0^{\epsilon} \frac{dq}{r}$

Work: $W_{\rm ab} = U_{\rm a} - U_{\rm b} = -q\Delta V$

Potential from field: $V_a - V_b = \int_a^b \vec{E} \cdot d\vec{l}$

Constant field: $\Delta V = -Ed$

Field from potential: $E_x = -\partial V/\partial x$, $E_y = -\partial V/\partial y$, $E_z = -\partial V/\partial z$

Conducting sphere,

radius R and charge Q: $V(r) = kQ/r \ (r > R)$

 $V(r) = kQ/R \ (r \le R)$

Chapter 24: Capacitance and Dielectrics

Field at a conductor: $E = \sigma/\epsilon_0$

Field between two oppositely

charged plates (σ and $-\sigma$): $E = \sigma/\epsilon_0$

Parallel-plate capacitor: $C = Q/V = K\epsilon_0 A/d$

Energy in a capacitor: $U = \frac{1}{2}CV^2 = \frac{1}{2}Q^2/C = \frac{1}{2}QV$

Capacitors in parallel: $C_{eq} = C_1 + C_2 + \dots$

Capacitors in series: $1/\hat{C}_{eq} = 1/C_1 + 1/C_2 + \dots$

Total charge: $Q = C_{eq}V$

Chapter 25: Current, Resistance, and Electromotive Force

Electric current: I = dq/dt or $\Delta q/\Delta t$

Current density: $J = I/A = nqv_d$

Resistivity: $\rho = E/J$

Resistance (cylindrical conductor): $R = \rho L/A$

Ohm's Law: V = IR

Source with internal resistance: $V_{ab} = \mathcal{E} - Ir$

Power (general): $P = V_{ab} I$

Power delivered to a resistor: $P = VI = I^2R = V^2/R$

Chapter 26: DC Circuits

Resistors in series: $R_{eq} = R_1 + R_2 + \dots$

Resistors in parallel: $1/R_{eq} = 1/R_1 + 1/R_2 + \dots$

Kirchoff's Rules: $\Sigma I = 0$ (node), $\Sigma V = 0$ (loop)

RC circuit, time constant: $\tau = RC$

RC circuit, capacitor charging: $q(t) = \mathcal{E}C \left(1 - e^{-t/\tau}\right)$

 $= q_F \left(1 - e^{-t/\tau} \right)$

 $V(t) = q(t)/C = \mathcal{E}\left(1 - e^{-t/\tau}\right)$

 $i(t) = i_{\text{max}} e^{-t/\tau}, i_{\text{max}} = \mathcal{E}/R$

RC circuit, capacitor discharging: $q(t) = Q_0 e^{-t/\tau}$

 $V(t) = V_0 e^{-t/\tau}, V_0 = Q_0/C$

 $i(t) = I_0 e^{-t/\tau}, I_0 = Q_0/\tau$

Chapter 27: Magnetic Fields and Magnetic Forces

Magnetic force: $\vec{F} = q\vec{v} \times \vec{B}$

Motion in a magnetic field: $R = \frac{mv}{|q|B}$, $T = \frac{2\pi m}{|q|B}$

Magnetic flux: $\Phi_B = \int \vec{B} \cdot d\vec{A}$ or $\Phi_B = BA$

Force on a current-carrying segment: $d\vec{F} = \vec{l}d\vec{l} \times \vec{B}$

Force on a current-carrying wire: $\vec{F} = I\vec{L} \times \vec{B}$

Magnetic moment of a loop: $\vec{\mu} = I\vec{A}$

Torque on a current-carrying loop: $\tau = IBA \sin \phi$

Potential energy of a loop: $U = -\vec{\mu} \cdot \vec{B}$

Chapter 28: Sources of Magnetic Field

Field of a moving charge: $\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$

Field of a current-carrying element: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$

Field of a current-carrying wire: $B = \frac{\mu_0 I}{2\pi r}$

Force between wires: $\frac{F}{L} = \frac{\mu_0 I_1 I_2}{2\pi r}$

Field at the center of a loop: $B = \frac{\mu_0 I}{2a}$

Field on the axis of a solenoid: $B = \mu_0 nI$, n = turns per unit length

Ampere's Law: $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{encl}}$

Chapter 29: Electromagnetic Induction

Faraday's Law: $\mathcal{E} = -d\Phi_B/dt$

 $=-A\,dB/dt$ (constant area, varying field)

 $=-B\,dA/dt$ (constant field, varying area)

Induced current: $I_{\text{ind}} = \mathcal{E}/R$

Motional EMF $\mathcal{E} = vBL$ (constant field)

 $= \oint (\vec{v} \times \vec{B}) \cdot d\vec{l} \quad (\text{if } \vec{B} = \vec{B(r)})$

Induced electric fields: $\oint \vec{E} \cdot d\vec{l} = -d\Phi_B/dt$

Chapter 30: Inductance

Inductance of a loop: $L = \Phi_B/i$

Solenoid (length l, area A, density n): $L/l = \mu_0 A n^2$

Induced emf: $\mathcal{E} = -L \, di/dt$

Magnetic field energy: $U = \frac{1}{2}LI^2$

RL circuit time constant: $\tau = L/R$

RL circuit current: $i(t) = \mathcal{E}/R (1 - e^{-t/\tau})$

LC circuit: $\omega = 2\pi f = 1/\sqrt{LC}$

LC circuit energy: $\frac{1}{2}Q_{\text{max}}^2/C = \frac{1}{2}LI_{\text{max}}^2$

LRC circuit: $\omega' = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$

Chapter 31: Alternating Current

rms current, voltage: $I_{\rm rms} = I/\sqrt{2}, V_{\rm rms} = V/\sqrt{2}$

Inductive and capacative reactance: $X_L = \omega L, X_C = 1/\omega C$

Impedance: $Z = \sqrt{R^2 + (X_L - X_C)^2}$

Current amplitude: $I = \mathcal{E}'/Z$

Phase angle: $\tan \phi = (X_L - X_C)/R$

Resonance: $\omega_d = \omega_0 = 1/\sqrt{LC}$

 $X_L = X_C$ and $Z = R = \min$

current = maximum