Constants and units: $g = 9.8 \,\mathrm{m/s^2}$, $1 \,\mathrm{mm} = 10^{-3} \,\mathrm{m}$, $1 \,\mathrm{cm} = 10^{-2} \,\mathrm{m}$, $1 \,\mathrm{km} = 10^3 \,\mathrm{m}$, $1 \,\mathrm{in} = 2.54 \,\mathrm{cm}$, $1 \,\mathrm{mi} = 1609 \,\mathrm{m}$; $1 \,\mathrm{N} \,\mathrm{(newton)} = \mathrm{kg} \cdot \mathrm{m/s^2}$, $1 \,\mathrm{J} \,\mathrm{(joule)} = \mathrm{N} \cdot \mathrm{m} = \mathrm{kg} \cdot \mathrm{m^2/s^2}$, $1 \,\mathrm{W} \,\mathrm{(watt)} = \mathrm{J/s}$. density=mass/volume.

Volumes. Cylinder: $\pi R^2 h$, sphere: $\frac{4}{3}\pi R^3$, cone: $\frac{1}{3}\pi R^2 h$

Quadratic equation. $ax^2 + bx + c = 0$, $x = \left(-b \pm \sqrt{b^2 - 4ac}\right)/(2a)$

Derivatives/integrals. $\frac{d}{dt}t^n = nt^{n-1}$, $\int r^n dr = \frac{1}{n+1}r^{n+1}$

Vectors. If $\vec{c} = \vec{a} + \vec{b}$, then $c_x = a_x + b_x$, $c_y = a_y + b_y$, $c_z = a_z + b_z$ and $c = \sqrt{c_x^2 + c_y^2 + c_z^2}$. Dot product: $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z = ab \cos \alpha$. Cross product: $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{j}$. **Kinematics:** v = dx/dt, $a = dv/dt = d^2x/dt^2$. Constant a: $v - v_0 = at$, $x - x_0 = \frac{v_0 + v}{2}t = v_0 t + \frac{1}{2}at^2 = \frac{v^2 - v_0^2}{2a}$. Projectile: $v_x = const$, $x - x_0 = v_x t$, $v_y = v_{0y} - gt$, $y - y_0 = v_{0y} t - \frac{1}{2}gt^2 = (v_{0y}^2 - v_y^2)/(2g)$. Range: $(v_0^2/g) * \sin(2\theta)$

Circular motion with constant speed: $\omega = v/R$, $a_c = v^2/R = \omega^2 R$, towards center.

The three Laws of motion: (1) If $\vec{F}_{net} = 0$ then $\vec{v} = const$; (2) $\vec{F}_{net} = m\vec{a}$; (3) $\vec{F}_{21} = -\vec{F}_{12}$ Specific forces. Gravity: $m\vec{g}$ (down). Normal \vec{N} - perpendicular to surface; tension T - constant along the string. Spring force: F = -kx (k is spring constant).

Friction - parallel to surface; kinetic: $f_k = \mu_k N$; static: $f_s \leq \mu_s N$ with N = mg (horizontal plane) or $N = mg \cos \theta$ (inclined plane).

Inclined plane. Components of gravity: $mg \sin \theta$ (parallel to plane, downhill) and $mg \cos \theta$ (perpendicular to plane). Kinetic friction: $\mu_k mg \cos \theta$ (parallel to plane, opposite to direction of motion).

Centripetal motion: $F_{net} = mv^2/R$; direction of \vec{F}_{net} - towards center of revolution.

Work and power. Constant force $W = \vec{F} \cdot (\vec{r_2} - \vec{r_1}) = F_x \Delta x + F_y \Delta y + F_z \Delta z$ (or, $W = F \Delta r \cos \alpha$); general: $W_{AB} = \int_A^B \vec{F} \cdot d\vec{r}$. Power: $P = W/\Delta t = \vec{F} \cdot \vec{v}$. Work by specific forces: gravity: $W_g = -mg\Delta y$ (and Δx does not matter); normal: $W_N = 0$;

kinetic friction: $W_f = -fL$; spring $W_s = \frac{1}{2}k\left(x_i^2 - x_f^2\right)$

Kinetic energy and work-energy theorem: $K = \frac{1}{2}mv^2$, $\Delta K = W$ where W is the *net* work (i.e. work by all forces).

Potential energy. For conservative forces (with path-independent work) introduce $U(\vec{r})$ so that $W_{AB} = U_A - U_B = -\Delta U$. For specific forces: gravity: $U_g = mgh$; spring: $U_s = \frac{1}{2}kx^2$. If only conservative forces, then energy conservation: K + U = const. If also non-conservative forces (e.g., friction) with work $W_{non-cons}$, then $\Delta(K + U) = W_{non-cons}$