Formulas - exam 2

Constants and units:
- \(g = 9.8 \text{ m/s}^2 \)
- \(1 \text{ mm} = 10^{-3} \text{ m} \)
- \(1 \text{ cm} = 10^{-2} \text{ m} \)
- \(1 \text{ km} = 10^3 \text{ m} \)
- \(1 \text{ in} = 2.54 \text{ cm} \)
- \(1 \text{ N} = 1 \text{ kg} \cdot \text{ m/s}^2 \)
- \(1 \text{ J} = 1 \text{ kg} \cdot \text{ m}^2/\text{s}^2 \)
- \(1 \text{ W} = 1 \text{ Watt} = 1 \text{ J/s} \)

Volumes.
- Cylinder: \(\pi R^2 h \)
- \(\frac{2}{3} \pi R^3 \)

Quadratic equation.
\[ax^2 + bx + c = 0, \quad x = \left(-b \pm \sqrt{b^2 - 4ac} \right) / (2a) \]

Vectors.
- If \(\vec{a} = a_i \hat{i} + a_j \hat{j} + a_k \hat{k} \), then \(\vec{c} = \vec{a} + \vec{b} \)
- \(c_x = a_x + b_x \), \(c_y = a_y + b_y \), \(c_z = a_z + b_z \)

Kinematics.
- 1D: \(v = \frac{dx}{dt}, \quad a = \frac{dv}{dt} = \frac{d^2x}{dt^2} \)
- \(\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2 \)

Circular motion with constant speed: \(\omega = \frac{v}{r}, \quad a_c = \frac{v^2}{r} = \omega^2 r \) towards center.

The three Laws of motion:
1. If \(F_{\text{net}} = 0 \), then \(\vec{v} = \text{const} \)
2. \(F_{\text{net}} = m \ddot{a} \)
3. \(F_{21} = - F_{12} \)

Specific forces. Gravity: \(mg \) (down). Normal \(N \) - perpendicular to surface; tension \(T \) - constant along the string. Spring force: \(F = -kx \) (k is spring constant).

Friction - parallel to surface; kinetic: \(f_k = \mu_k N \); static: \(f_s \leq \mu_s N \) with \(N = mg \) (horizontal plane) or \(N = mg \cos \theta \) (inclined plane).

Inclined plane. Components of gravity: \(mg \sin \theta \) (parallel to plane, downhill) and \(mg \cos \theta \) (perpendicular to plane).

Centripetal motion: \(F_{\text{net}} = m \omega^2 R \); direction of \(\vec{F}_{\text{net}} \) - towards center of revolution.

Work and power.
- Constant force \(F = const \) \(W = F \cdot \Delta d \)
- Power: \(P = W / \Delta t = F \cdot \vec{v} \)

Kinetic energy and work-energy theorem: \(K = \frac{1}{2} mv^2 \), \(\Delta K = W \) where \(W \) is the net work (i.e. work by all forces).

Potential energy.
- For conservative forces (with path-independent work) introduce \(U(r) \) so that \(W_{AB} = U_A - U_B = -\Delta U \).
- For specific forces: gravity: \(U_g = mgh \); spring: \(U_s = \frac{1}{2} k x^2 \).

If only conservative forces, then energy conservation:
\[K + U = \text{const} \]

If also non-conservative forces (e.g., friction) with work \(W_{\text{non-cons}} \), then \(\Delta (K + U) = W_{\text{non-cons}} \)

Momentum. \(\vec{p} = m \vec{v}, \quad \vec{P}_{\text{tot}} = \sum m_i \vec{v}_i \) . Impulse \(\Delta \vec{p} = \vec{P}_{\text{ext}} \Delta t \). Conservation: if \(\vec{F}_{\text{ext}} = 0 \), then \(\vec{P}_{\text{tot}} = \text{const} \) (e.g., in collisions).

Rotation (kinematics):
- If \(N \)-number of revolutions, then \(\theta = 2\pi N \). Angular velocity \(\omega = d\theta/dt \) (in rad/s); ang. acceleration \(\alpha = d\omega/dt \) (in rad/s^2).
- If \(\alpha = \text{const} \), then \(\theta = \omega_0 t + \frac{1}{2} \alpha t^2 \) and \(\omega = \omega_0 + \alpha t \). Connection with linear: \(\omega = v/r, \quad \alpha = a/r \)

Dynamics:
- \(K = \frac{1}{2} I \omega^2 \); \(I \)-moment of inertia.
- For point masses: \(I = \sum m_i r_i^2 \), for solid bodies \(I = \int dV \rho r^2 \), Specific \(I \)'s: rod (about center) \(ML^2/12 \); rod (about end) \(ML^2/3 \); hoop \(MR^2 \); disk \(MR^2/2 \); solid sphere \(\frac{2}{5} MR^2 \). Parallel axes theorem: \(I = I_{CM} + MD^2 \)
- Torque \(\tau = F R \sin \phi = Fd \). The 2nd Law for rotation: \(\tau = I \alpha \).
- Rotation+linear: \(K = \frac{1}{2} mv^2 + \frac{1}{2} I \omega^2 \). If \(\omega = v/R \) (e.g., rolling) \(K = \frac{1}{2} mv^2(1 + 1/(MR^2)) \)