Constants and units: \(g = 9.8 \text{ m/s}^2 \), \(1 \text{ mm} = 10^{-3} \text{ m} \), \(1 \text{ cm} = 10^{-2} \text{ m} \), \(1 \text{ km} = 10^3 \text{ m} \), \(1 \text{ in} = 2.54 \text{ cm} \), \(1 \text{ N (newton)} = \text{ kg} \cdot \text{ m/s}^2 \), \(1 \text{ J (joule)} = \text{ N} \cdot \text{ m} = \text{ kg} \cdot \text{ m}^2/\text{s}^2 \), \(1 \text{ W (watt)} = \text{ J/s} \).

Volumes. Cylinder: \(\pi R^2 h \), sphere: \(\frac{4}{3} \pi R^3 \), cone: \(\frac{1}{3} \pi R^2 h \)

Quadratic equation. \(ax^2 + bx + c = 0 \), \(x = \left(-b \pm \sqrt{b^2 - 4ac} \right) / (2a) \)

Derivatives/integrals. \(\frac{d}{dt} t^n = nt^{n-1} \), \(\int r^n \, dr = \frac{1}{n+1} r^{n+1} \)

Vectors. If \(\vec{c} = \vec{a} + \vec{b} \), then \(c_x = a_x + b_x \), \(c_y = a_y + b_y \), \(c_z = a_z + b_z \) and \(c = \sqrt{c_x^2 + c_y^2 + c_z^2} \). Dot product: \(\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z = ab \cos \alpha \). Cross product: \(\vec{i} \times \vec{j} = \vec{k} \), \(\vec{j} \times \vec{k} = \vec{i} \), \(\vec{k} \times \vec{i} = \vec{j} \).

Kinematics: \(v = dx/dt, a = dv/dt = d^2 x / dt^2 \). Constant \(a \): \(v - v_0 = at \), \(x - x_0 = \frac{v_0 + v}{2} t = v_0 t + \frac{1}{2} a t^2 \). Projectile: \(v_x = \text{ const} \), \(x - x_0 = v_x t \), \(v_y = v_{0y} - gt \), \(y - y_0 = v_{0y} t - \frac{1}{2} gt^2 = (v_{0y}^2 - v_y^2) / (2g) \). Range: \((v_0^2 / g) \sin(2\theta) \)

Circular motion with constant speed: \(\omega = v/R \), \(a_c = v^2 / R = \omega^2 R \), towards center.

The three laws of motion: (1) If \(\vec{F}_{\text{net}} = 0 \) then \(\vec{v} = \text{ const} \); (2) \(\vec{F}_{\text{net}} = m \vec{a} \); (3) \(\vec{F}_{21} = -\vec{F}_{12} \)

Specific forces. Gravity: \(mg \) (down). Normal \(\vec{N} \) - perpendicular to surface; tension \(T \) - constant along the string. Spring force: \(F = -kx \) (\(k \) is spring constant). Friction - parallel to surface; kinetic: \(f_k = \mu_k N \); static: \(f_s \leq \mu_s N \) with \(N = mg \) (horizontal plane) or \(N = mg \cos \theta \) (inclined plane).

Inclined plane. Components of gravity: \(mg \sin \theta \) (parallel to plane, downhill) and \(mg \cos \theta \) (perpendicular to plane). Kinetic friction: \(\mu_k mg \cos \theta \) (parallel to plane, opposite to direction of motion).

Centripetal motion: \(F_{\text{net}} = mv^2 / R \); direction of \(\vec{F}_{\text{net}} \) - towards center of revolution.

Work and power. Constant force \(W = \vec{F} \cdot (\vec{r}_2 - \vec{r}_1) = F_x \Delta x + F_y \Delta y + F_z \Delta z \) (or, \(W = F \Delta r \cos \alpha \)); general: \(W_{AB} = \int_A^B \vec{F} \cdot d\vec{r} \). Power: \(P = W / \Delta t = \vec{F} \cdot \vec{v} \). Work by specific forces: gravity: \(W_g = -mg \Delta y \) (and \(\Delta x \) does not matter); normal: \(W_N = 0 \); kinetic friction: \(W_f = -fL \); spring \(W_s = \frac{1}{2} k \left(x_1^2 - x_2^2 \right) \)

Kinetic energy and work-energy theorem: \(K = \frac{1}{2} mv^2 \), \(\Delta K = W \) where \(W \) is the net work (i.e., work by all forces).

Potential energy. For conservative forces (with path-independent work) introduce \(U (\vec{r}) \) so that \(W_{AB} = U_A - U_B = -\Delta U \). For specific forces: gravity: \(U_g = mgh \); spring: \(U_s = \frac{1}{2} kx^2 \). If only conservative forces, then energy conservation: \(K + U = \text{ const} \). If also non-conservative forces (e.g., friction) with work \(W_{\text{non-cons}} \), then \(\Delta (K + U) = W_{\text{non-cons}} \)