NJIT Physics 111 Formula Sheet

Chapter 1:Vectors and Mathematics Formulas

Vector magnitude:	$ \vec{A} = \sqrt{A_x^2 + A_y^2} \text{ or } \sqrt{A_x^2 + A_y^2 + A_z^2}$
Vector direction:	$ \tan \theta = \frac{A_y}{A_z} $
Dot Product:	$\vec{A} \cdot \vec{B} = \vec{A}_x B_x + A_y B_y + A_z B_z = \vec{A} \vec{B} \cos \theta$
Cross Product:	$\hat{i} \times \hat{j} = \hat{k}$ $\hat{j} \times \hat{k} = \hat{i}$ $\hat{k} \times \hat{i} = \hat{j}$
	$\hat{i} imes \hat{i} = \hat{j} imes \hat{j} = \hat{k} imes \hat{k} = 0$
	$\vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} + (A_z B_x - A_x B_z) \hat{j}$
	$+(A_xB_y-A_yB_x)\hat{k}$
	$ \vec{A} imes \vec{B} = \vec{A} \vec{B} \sin \theta$
Quadratic formula:	$ax^{2} + bx + c = 0, x = \left(-b \pm \sqrt{b^{2} - 4ac}\right)/(2a)$
Derivatives, Integrals:	$\frac{d}{dt}t^n = nt^{n-1}$ and $\int t^n dt = \frac{1}{n+1}t^{n+1}$
Circumference:	$C = 2\pi r$
Sphere area, volume:	$A = 4\pi r^2, V = \frac{4}{3}\pi r^3$

Chapter 2: One-Dimensional Motion

Displacement:	$\Delta x = x_f - x_0$
Constant velocity:	$x_f = x_0 + vt$ or $\Delta x = vt$
Kinematics:	$v_f = v_0 + at$
	$\Delta x = v_0 t + \frac{1}{2}at^2$
	$v_f^2 = v_0^2 + 2a\overline{\Delta}x$
	$v_f + v_0 = 2\Delta x/t$
	$\Delta x = v_f t - \frac{1}{2}at^2$
Velocity:	$v_{\text{avg}} = (x_f - x_0)/(t_f - t_0), v(t) = dx/dt$
Acceleration:	$a_{\text{avg}} = (v_f - v_0)/(t_f - t_0), \ a(t) = dv/dt$
Acceleration due to gravity:	$g = 9.8 \text{ m/s}^2$

Chapter 3: Two- and Three-Dimensional Motion

 $\begin{array}{ll} \mbox{Position vector:} & \vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \\ \mbox{Average velocity} & \vec{v}_{\rm avg} = (\vec{r}_f - \vec{r}_0)/(t_f - t_0) \\ \mbox{Instantaneous velocity:} & \vec{v}(t) = d\vec{r}/dt \\ \mbox{Average acceleration:} & \vec{a}_{\rm avg} = (\vec{v}_f - \vec{v}_0)/(t_f - t_0) \\ \mbox{Instantaneous acceleration:} & \vec{a}(t) = d\vec{v}/dt \\ \mbox{Projectile range:} & R = v^2 \sin(2\theta)/g \\ \mbox{Radial acceleration:} & a_{\rm rad} = v^2/r = 4\pi^2 r/T^2 \end{array}$

Chapter 4: Newton's Laws of Motion

 $\begin{array}{ll} \mbox{First Law:} & \vec{F}_{\rm net} = 0 \longleftrightarrow \vec{v} = \mbox{constant} \\ \mbox{Second Law:} & \vec{F}_{\rm net} = m\vec{a} \\ \mbox{Third Law:} & \vec{F}_{12} = -\vec{F}_{21} \end{array}$

Chapter 5: Applying Newton's Laws

Kinetic and static friction: $f_k = \mu_k F_N$ and $f_s \le \mu_s F_N$ Normal force: $F_N = mg$ on horizontal surface, $F_N = mg \cos \theta$ on incline

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Ki	netic Energy
Work done by a constant for Kinetic ene Work-energy theor Work by a non-constant for Por	rgy: $K = \frac{1}{2}mv^2$ em: $W_{\text{tot}} = K_2 - K_1 = \Delta K$
Chapter 7: Potential En	ergy and Energy Conservation
Hooke's L Work done by a spri Work done by grav Gravitational potential ener Elastic potential ener Conservat Force and Potential Ener	ing: $W = \frac{1}{2}k(x_f^2 - x_0^2)$ ity: $W = -mg\Delta y$ rgy: $U_g = mgh$ rgy: $U_E = \frac{1}{2}kx^2$ ion: $(K + U_g + U_E)_0 + W_{other} = (K + U_g + U_E)_f$
Chapter 8: Momentum,	Impulse, and Collisions
Momentum Force and momentum Impuls Conservation Completely inelastic collision 1-D Elastic collision Center of mas	m: $\vec{p} = m\vec{v}$ m: $\vec{F} = \Delta \vec{p} / \Delta t$ or $d\vec{p} / dt$ se: $\vec{J} = \Delta \vec{p} = m\Delta \vec{v} = \vec{F}_{avg} \Delta t$ $\vec{J} = \int_{t_1}^{t_2} \vec{F}(t) dt$ m: $m_A \vec{v}_A + m_B \vec{v}_B + \ldots = m_A \vec{v}_A' + m_B \vec{v}_B' + \ldots$ $(\vec{v}_A', \vec{v}_B' \text{ are post-collision velocities})$ m: $m_A \vec{v}_A + m_B \vec{v}_B = (m_A + m_B) \vec{v}_f$ ms: $v_A + v'_A = v_B + v'_B$
- Chapter 9: Rotation of I	Rigid Bodies
Angular displacement: Constant velocity: Kinematics:	$\Delta \theta = \theta_f - \theta_0$ $\theta_f = \theta_0 + \omega t \text{ or } \Delta \theta = \omega t$ $\omega_f = \omega_0 + \alpha t$ $\Delta \theta = \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega_f^2 = \omega_0^2 + 2\alpha \Delta \theta$ $\omega_f = \omega_0 t + \omega_0 t = 0$
Velocity: Acceleration: Angular → tangential: Radial acceleration: Rotational kinetic energy: CM Moment of Inertia: Parallel axis theorem:	$\begin{split} & \omega_f + \omega_0 = 2\Delta\theta/t \\ & \omega_{\rm avg} = (\theta_f - \theta_0)/(t_f - t_0), \ \omega(t) = d\theta/dt \\ & \alpha_{\rm avg} = (\omega_f - \omega_0)/(t_f - t_0), \ \alpha(t) = d\omega/dt \\ & \Delta s = r\Delta\theta, \ v_{\rm tan} = r\omega, \ a_{\rm tan} = r\alpha \\ & a_{\rm rad} = r\omega^2 \\ & K_{\rm rot} = \frac{1}{2}I\omega^2 \\ & {\rm Point\ mass,\ } mr^2. \ {\rm Disk,\ } \frac{1}{2}mR^2. \ {\rm Ring,\ } mR^2. \\ & {\rm Spherical\ shell,\ } \frac{2}{3}mR^2. \ {\rm Sphere,\ } \frac{2}{5}mR^2. \\ & {\rm Rod\ (about\ center),\ } \frac{1}{12}mL^2 \\ & I = I_{\rm CM} + md^2 \end{split}$

Chapter 10: Dynamics of Rotatio	nal Motion			
Torque (magnitude): Torque (vector):	$\tau = rF\sin\theta$			
Chapter 11: Static Equilibrium –				
Static equilibrium conditions: $\vec{F}_{net} = 0$ $\vec{\tau}_{net} = 0$ about any point				
Chapter 12: Fluid Mechanics				
	17			
Density: $\rho = m/V$ or				
Density of water: $\rho_{\rm H_2O} = 1000$	kg/m ^o			
Pressure: $P = F/A$. 105 D			
Atmospheric pressure: $P_{\rm atm} = 1.01 \times 10^5 \ {\rm Pa}$				
Fluid pressure: $P = P_0 + \rho g h$				
Absolute pressure $P_{abs} = P_g +$				
Buoyant force: $F_B = \rho_f g V_{\rm obj}$				
Volume flow rate: $dV/dt = Av$				
Continuity equation: $A_1v_1 = A_2v_2$ (incompressible fluid)				
Bernoulli Equation: $P + \rho g h + \frac{1}{2} \rho$	$ov^2 = \text{constant}$			
Chapter 13: Gravitation				

Gravitational constant:	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Mass of the Earth:	$M_E = 5.97 \times 10^{24} \text{ kg}$
Radius of the Earth:	$R_E = 6.38 \times 10^6 \text{ m}$
Force of gravity:	$F_G = GMm/r^2$
Local acceleration due to gravity:	$g = GM_E/R_E^2$
Gravitational potential energy:	U = -GMm/r
Orbits:	$v = 2\pi r/T$
	$v^2 = GM/r$
	$T^2 = 4\pi^2 r^3/(GM)$ (Kepler's Law)
	$T^2/r^3 = \text{constant} = 4\pi^2/(GM)$
Escape velocity from surface:	$v_{\rm esc} = \sqrt{2GM/R}, R =$ planet radius