Units: SI system: kg (kilogram), m (meter), s (second), C (coulomb); \mathcal{A} (ampere)=C/s, V (volt)=J/C, F (farad)=C/V, Ω (ohm)=V/ \mathcal{A} . 1 mm = 10⁻³ m, 1 cm = 10⁻² m, 1 km = 10³ m; 1 N (newton)=kg·m/s², 1 J (joule)=N · m = kg · m²/s², 1 W (watt)=J/s; prefixes: m (milli) 10⁻³, μ (micro) 10⁻⁶, n (nano) 10⁻⁹, p(pico) 10⁻¹², k (kilo) 10³, M (mega) 10⁶. **Constants:** $g = 9.8 \text{ m/s}^2$, $k_e = 9 * 10^9 \text{ N m}^2/\text{C}^2 = 1/(4\pi\epsilon_0)$, $\epsilon_0 = 8.85 * 10^{-12} \text{ C}^2/(\text{N m}^2)$, $\mu_0 = 4\pi * 10^{-7} T - m/A$. $e = -1.6 * 10^{-19} \text{ C}$, $m_e = 9.11 * 10^{-31} \text{ kg}$, $m_p \simeq m_n = 1.67 * 10^{-27} kg$ **Volumes.** Cylinder: $\pi R^2 h$, sphere: $\frac{4}{3}\pi R^3$, cone: $\frac{1}{3}\pi R^2 h$. **Areas:** Sphere: $4\pi R^2$ **Quadratic equation.** $ax^2 + bx + c = 0$, $x = \left(-b \pm \sqrt{b^2 - 4ac}\right)/(2a)$ **Derivatives/integrals.** $\frac{d}{dt}x^n = nx^{n-1}$, $\int x^n dx = \frac{1}{n+1}x^{n+1}$, $\int dx/x = \ln x$; $\int dx / \sqrt{a^2 + x^2} = \ln \left(x + \sqrt{a^2 + x^2}\right)$; $\int dx (a^2 + x^2)^{-\frac{3}{2}} = x/(a^2\sqrt{a^2 + x^2})$ **Vectors.** If $\vec{c} = \vec{a} + \vec{b}$, then $c_x = a_x + b_x$, $c_y = a_y + b_y$, $c_z = a_z + b_z$ and $c = \sqrt{c_x^2 + c_y^2 + c_z^2}$. Dot product: $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z = a * b * \cos \theta$. Cross product: $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{j}$; $\vec{A} \times \vec{B} = (A_y B_z - A_z B_y)\hat{i} + (A_z B_x - A_x B_z)\hat{j} + (A_x B_y - A_y B_x)\hat{k}$; $|\vec{A} \times \vec{B}| = A * B * \sin \alpha$.

Coulombs Law: $F = k_e \frac{q_1 q_2}{r^2}$, *r*-distance between charges; in vector form $\vec{F} = k_e \frac{q_1 q_2}{r^2} \hat{r}$, $\hat{r} = \vec{r}/r$ - unit vector from charge q_1 to q_2 , $k_e = 9 * 10^9$... Superposition: if charge q_1 acts on q_0 with \vec{F}_{01} , charge q_2 acts on q_0 with \vec{F}_{02} , etc., then $\vec{F}_{\text{net on } q_0} = \vec{F}_{01} + \vec{F}_{02} + \dots$

Electric field. Definition: $\vec{E} = \vec{F_0}/q_0$ (charge q_0 is a "probe"). Field from a charge q: $E = k_e \frac{q}{r^2}$, r-distance between charge and observation point; in vector form $\vec{E} = k_e \frac{q}{r^2} \hat{r}$, $\hat{r} = \vec{r}/r$ - unit vector from charge q to the observation point, $k_e = 9 * 10^9$... Superposition: consider charges q_1, q_2 , etc. and the observation point. If q_1 creates field $\vec{E_1}$ at the observation point, q_2 creates field $\vec{E_2}$, etc., then $\vec{E} = \vec{E_1} + \vec{E_2} + \dots$ Force on a charge placed in external field \vec{E} : $\vec{F} = q\vec{E}$.

Gauss Law. Flux through a small area A with \vec{A} along the normal to the surface: $\Phi = \vec{E} \cdot \vec{A}$. Flux through a closed surface: $\oint \vec{E} \cdot d\vec{A} = q_{\rm enc}/\epsilon_0$. Field E(r) from a uniformly charged spherical shell with radius R and charge Q: E(r < R) = 0, $E(r > R) = k_e Q/r^2$. Field E(r) from a uniformly charged infinite line with linear charge density λ : $E(r) = \lambda/(2\pi\epsilon_0 r)$. Field E from a uniformly charged infinite non-conducting plane with surface charge density σ : $E = \sigma/(2\epsilon_0)$.

From Phys 111:

Kinematics: v = dx/dt, $a = dv/dt = d^2x/dt^2$. Circular motion with constant speed: $\omega = v/R$, $a_c = v^2/R = \omega^2 R$, towards center.

The three Laws of motion: (1) If $\vec{F}_{net} = 0$ then $\vec{v} = const$; (2) $\vec{F}_{net} = m\vec{a}$; (3) $\vec{F}_{21} = -\vec{F}_{12}$ Work and power. $W_{AB} = \int_{A}^{B} \vec{F} \cdot d\vec{r}$. Power: $P = W/\Delta t = \vec{F} \cdot \vec{v}$.

Kinetic energy and work-energy theorem: $K = \frac{1}{2}mv^2$, $\Delta K = W$ where W is the *net* work (i.e. work by all forces).

Potential energy. For conservative forces (with path-independent work) introduce $U(\vec{r})$ so that $W_{AB} = U_A - U_B = -\Delta U$. If only conservative forces, then energy conservation: K + U = const.