This print-out should have 15 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time.

Concept 08 26

12:01, highSchool, multiple choice, < 1 min, fixed.

001

Nobody at the playground wants to play with an obnoxious boy, so he fashions a seesaw as shown so he can play by himself.

Explain how this is done.

- 1. The angular velocity of the boy is cancelled with that of the board.
- 2. The weight of the boy is balanced by the weight of the board.
- 3. The fulcrum is very far from the boy.
- 4. The weight of the boy is balanced with an unknown heavy metal.

Serway CP 08 40

10:09, trigonometry, numeric, > 1 min, normal.

002

The net work done in accelerating a propeller from rest to an angular speed of 200 rad/s is 3000 J.

What is the moment of inertia of the propeller? Answer in units of $kg \cdot m^2$.

Diatomic Molecule O2

10:05, trigonometry, numeric, > 1 min, normal.

003

Consider the diatomic molecule oxygen, O_2 , which is rotating in the xy plane about the z axis passing through its center, perpendicular to its length. The mass of each oxygen atom

is 2.66×10^{-26} kg, and at room temperature, the average separation distance between the two oxygen atoms is 1.21×10^{-10} m(the atoms are treated as point masses).

If the angular speed of the molecule about the z axis is 4.6×10^{12} rad/s, what is its rotational kinetic energy? Answer in units of J.

Inertia of Solid Cylinder

10:06, trigonometry, numeric, > 1 min, normal.

004

Calculate the moment of inertia of a solid cylinder of mass $10.2~\rm kg$ and radius 5 m about an axis parallel to the center-of-mass axis and passing through the edge of the cylinder. (Use the parallel-axis theorem and Table 10.2) Answer in units of $~\rm kg~m^2$.

005

Calculate the moment of inertia of a solid sphere of mass 10.2 kg and radius 5 m about an axis tangent to its surface. Answer in units of kg m^2 .

Rotating a Rigid Object 01

10:06, trigonometry, numeric, > 1 min, normal.

006

The rigid object shown is rotated about an axis perpendicular to the paper and through center point O. The total kinetic energy of the object as it rotates is 5 J.

What is the moment of inertia of the object? Neglect the mass of the connecting rods and treat the masses as point masses. Answer in units of $kg \cdot m^2$.

007

What is the angular velocity of the object? Answer in units of rad/s.

Rigid Rectangular System

10:05, trigonometry, numeric, > 1 min, normal.

008

Four particles with masses 3 kg, 2 kg, 2 kg, and 4 kg are connected by rigid rods of negligible mass at the corners of a rectangle. The origin is at the center of the figure.

What is the moment of inertia about the y-axis? Answer in units of $kg m^2$.

009

What is the moment of inertia about the z-axis? Answer in units of $kg m^2$.

010

The system rotates around the z-axis at an angular velocity of 3 rad/s.

What is the kinetic energy of the system? Answer in units of J.

Spoked Wheel

10:06, trigonometry, numeric, > 1 min, wording-variable.

011

A wheel is formed from a hoop of mass 3.5 kg and five equally spaced spokes each of mass 0.15 kg. The hoop's radius is the length of 0.55 m each spoke.

Determine the moment of inertia of the wheel about an axis through its center and perpendicular to the plane of the wheel. Answer in units of $kg \cdot m^2$.

012

Determine the moment of inertia of the wheel about an axis through its rim and perpendicular to the plane of the wheel. Answer in units of $kg \cdot m^2$.

Rod Plus Weight

10:09, trigonometry, numeric, > 1 min, normal.

013

A uniform rod has length $44 \,\mathrm{m}$ and mass $3 \,\mathrm{kg}$.

A mass of 3 kg is attached at one end. The other end of the rod is pivoted about the horizontal axis at O.

The acceleration of gravity is 9.8 m/s^2 .

Determine the torque about O immediately after the rod-plus-mass system is released from the horizontal position. Answer in units of kg m²/s².

After the rod-plus-mass system is released, it rotates freely about the point O.

Determine its angular velocity ω as the rod passes through the vertical direction. Answer in units of s⁻¹.

015

The angle between the instantaneous position of the rod and the initial horizontal direction is 55° .

How much potential energy is released in going from 0° to 55° .? Answer in units of J.